Show simple item record

dc.contributor.authorCaviness, Katie
dc.contributor.authorBughio, Farah
dc.contributor.authorCrawford, Lindsey B.
dc.contributor.authorStreblow, Daniel N.
dc.contributor.authorNelson, Jay A.
dc.contributor.authorCaposio, Patrizia
dc.contributor.authorGoodrum, Felicia
dc.date.accessioned2016-07-23T00:47:48Z
dc.date.available2016-07-23T00:47:48Z
dc.date.issued2016-03-01
dc.identifier.citationComplex Interplay of the UL136 Isoforms Balances Cytomegalovirus Replication and Latency 2016, 7 (2):e01986-15 mBioen
dc.identifier.issn2150-7511
dc.identifier.doi10.1128/mBio.01986-15
dc.identifier.urihttp://hdl.handle.net/10150/617416
dc.description.abstractHuman cytomegalovirus (HCMV), a betaherpesvirus, persists indefinitely in the human host through poorly understood mechanisms. The UL136 gene is carried within a genetic locus important to HCMV latency termed the UL133/8 locus, which also carries UL133, UL135, and UL138. Previously, we demonstrated that UL136 is expressed as five protein isoforms ranging from 33-kDa to 19-kDa, arising from alternative transcription and, likely, translation initiation mechanisms. We previously showed that the UL136 isoforms are largely dispensable for virus infection in fibroblasts, a model for productive virus replication. In our current work, UL136 has emerged as a complex regulator of HCMV infection in multiple contexts of infection relevant to HCMV persistence: in an endothelial cell (EC) model of chronic infection, in a CD34(+) hematopoietic progenitor cell (HPC) model of latency, and in an in vivo NOD-scid IL2R gamma(null)(c) humanized (huNSG) mouse model for latency. The 33- and 26-kDa isoforms promote replication, while the 23- and 19-kDa isoforms suppress replication in ECs, in CD34(+) HPCs, and in huNSG mice. The role of the 25-kDa isoform is context dependent and influences the activity of the other isoforms. These isoforms localize throughout the secretory pathway, and loss of the 33- and 26-kDa UL136 isoforms results in virus maturation defects in ECs. This work reveals an intriguing functional interplay between protein isoforms that impacts virus replication, latency, and dissemination, contributing to the overall role of the UL133/8 locus in HCMV infection. IMPORTANCE The persistence of DNA viruses, and particularly of herpesviruses, remains an enigma because we have not completely defined the viral and host factors important to persistence. Human cytomegalovirus, a herpesvirus, persists in the absence of disease in immunocompetent individuals but poses a serious disease threat to transplant patients and the developing fetus. There is no vaccine, and current therapies do not target latent reservoirs. In an effort to define the viral factors important to persistence, we have studied viral genes with no known viral replication function in contexts important to HCMV persistence. Using models relevant to viral persistence, we demonstrate opposing roles of protein isoforms encoded by the UL136 gene in regulating latent and replicative states of infection. Our findings reveal an intriguing interplay between UL136 protein isoforms and define UL136 as an important regulator of HCMV persistence.
dc.description.sponsorshipHHS \ NIH \ National Institute of Allergy and Infectious Diseases (NIAID) [AI079059, AI21640]en
dc.language.isoenen
dc.publisherAMER SOC MICROBIOLOGYen
dc.relation.urlhttp://mbio.asm.org/lookup/doi/10.1128/mBio.01986-15en
dc.rightsCopyright © 2016 Caviness et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/
dc.titleComplex Interplay of the UL136 Isoforms Balances Cytomegalovirus Replication and Latencyen
dc.typeArticleen
dc.contributor.departmentUniv Arizona, Grad Interdisciplinary Program Geneten
dc.contributor.departmentUniv Arizona, Inst BIO5en
dc.contributor.departmentUniv Arizona, Dept Cellular & Mol Meden
dc.contributor.departmentUniv Arizona, Dept Immunobiolen
dc.identifier.journalmBioen
dc.description.noteOpen access.en
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
refterms.dateFOA2018-06-28T11:39:27Z
html.description.abstractHuman cytomegalovirus (HCMV), a betaherpesvirus, persists indefinitely in the human host through poorly understood mechanisms. The UL136 gene is carried within a genetic locus important to HCMV latency termed the UL133/8 locus, which also carries UL133, UL135, and UL138. Previously, we demonstrated that UL136 is expressed as five protein isoforms ranging from 33-kDa to 19-kDa, arising from alternative transcription and, likely, translation initiation mechanisms. We previously showed that the UL136 isoforms are largely dispensable for virus infection in fibroblasts, a model for productive virus replication. In our current work, UL136 has emerged as a complex regulator of HCMV infection in multiple contexts of infection relevant to HCMV persistence: in an endothelial cell (EC) model of chronic infection, in a CD34(+) hematopoietic progenitor cell (HPC) model of latency, and in an in vivo NOD-scid IL2R gamma(null)(c) humanized (huNSG) mouse model for latency. The 33- and 26-kDa isoforms promote replication, while the 23- and 19-kDa isoforms suppress replication in ECs, in CD34(+) HPCs, and in huNSG mice. The role of the 25-kDa isoform is context dependent and influences the activity of the other isoforms. These isoforms localize throughout the secretory pathway, and loss of the 33- and 26-kDa UL136 isoforms results in virus maturation defects in ECs. This work reveals an intriguing functional interplay between protein isoforms that impacts virus replication, latency, and dissemination, contributing to the overall role of the UL133/8 locus in HCMV infection. IMPORTANCE The persistence of DNA viruses, and particularly of herpesviruses, remains an enigma because we have not completely defined the viral and host factors important to persistence. Human cytomegalovirus, a herpesvirus, persists in the absence of disease in immunocompetent individuals but poses a serious disease threat to transplant patients and the developing fetus. There is no vaccine, and current therapies do not target latent reservoirs. In an effort to define the viral factors important to persistence, we have studied viral genes with no known viral replication function in contexts important to HCMV persistence. Using models relevant to viral persistence, we demonstrate opposing roles of protein isoforms encoded by the UL136 gene in regulating latent and replicative states of infection. Our findings reveal an intriguing interplay between UL136 protein isoforms and define UL136 as an important regulator of HCMV persistence.


Files in this item

Thumbnail
Name:
mBio-2016-Caviness-.pdf
Size:
2.185Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record

Copyright © 2016 Caviness et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license.
Except where otherwise noted, this item's license is described as Copyright © 2016 Caviness et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license.