• Login
    View Item 
    •   Home
    • Colleges, Departments, and Organizations
    • Hydrology & Atmospheric Sciences
    • Hydrology & Water Resources Technical Reports
    • View Item
    •   Home
    • Colleges, Departments, and Organizations
    • Hydrology & Atmospheric Sciences
    • Hydrology & Water Resources Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A RANDOM-WALK SIMULATION MODEL OF ALLUVIAL-FAN DEPOSITION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    HWR-1972-007.pdf
    Size:
    21.96Mb
    Format:
    PDF
    Download
    Author
    Price, Williams Evans, Jr.
    Affiliation
    Department of Hydrology & Water Resources, The University of Arizona
    Issue Date
    1972-06
    Keywords
    Alluvial fans -- Mathematical models.
    
    Metadata
    Show full item record
    Publisher
    Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ)
    Rights
    Copyright © Arizona Board of Regents
    Collection Information
    This title from the Hydrology & Water Resources Technical Reports collection is made available by the Department of Hydrology & Atmospheric Sciences and the University Libraries, University of Arizona. If you have questions about titles in this collection, please contact repository@u.library.arizona.edu.
    Abstract
    A digital model based on a random walk was used in an experiment to determine how well such a model is able to simulate alluvial - fan deposition. The model is in three dimensions and is dynamic with respect to both time and space. Two principal stochastic events were employed, (1) a relative uplift of the mountain area that is the source of the fan sediments, and (2) a storm event of sufficient magnitude to result in the deposition of material on the fan. These two events are assumed to follow independent Poisson processes with exponentially distributed interoccurrence times. The pattern of deposition is determined by a random walk from the canyon mouth at the mountain front, and each depositional event is assumed to occur instantaneously. The direction that each step in the walk takes is determined probabilistically by the gradient in the direction of flow, the momentum of flow, and the boundary conditions stipulated in the model. The type of flow, whether a depositing debris or water flow, or eroding water flow, depends upon the thickness of erodible material in the source basin. Deposition is assumed to occur over the entire route of flow either as a bed tapered in the direction of flow or as a bed of uniform thickness. The particle -size distribution of the water -flow deposits is governed by the slope in the direction of flow. Erosion is considered negative deposition and results from the exponential decline in elevation of the main stream channel at the fan apex during periods of no uplift, or from water flows containing little basin sediment. Results from the computer runs were printed as geologic maps of the fan surface, and geologic sections through the deposits; these indicate that, at least qualitatively, a random -walk model provides a reasonable basis for simulating alluvial -fan deposition.
    Series/Report no.
    Technical Reports on Hydrology and Water Resources, No. 7
    Sponsors
    The work upon which this dissertation is based is part of the Office of Water Resources Research project A-020-Ariz. Funds for the project were provided by the United States Department of the Interior, Office of Water Resources Research, as authorized under the Water Resources Act of 1964.
    Collections
    Hydrology & Water Resources Technical Reports

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.