Author
Song, JiaweiIssue Date
2016Advisor
Zhu, XiushanPeyghambarian, Nasser
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
The lasers operating in the wavelength range of 900 - 1000 nm have caused intense attention because they are in great demands for: 1. Highpower blue and deep UV laser generation 2. High power single-mode pump laser source 3. Light detection and Lidar , etc. And now, there are actually many different types of lasers can generate laser in this wavelength range. For example, Nd and Yb doped fiber laser, Nd and Yb doped glass and crystal lasers, OPO and SHG laser, etc. Among all this options, we decided to study the Nd-doped fiber laser for their outstanding advantages: 1. As fiber laser, it possess all the advantages of any fiber lasers have, such as: high power scalability, excellent beam quality, high spectral and intensity stability, super compactness, robustness and reliability. 2. Comparing to other rare-earth-ion, the Nd^3+ ions have a more broad emission wavelength range from 900-950 nm. My goals for doing this thesis research are:1.Experimentally and theoretically investigate Nd-doped fiber lasers and amplifiers at 9xx nm. 2. Develop 9xx nm single frequency fiber lasers and amplifiers. 3.Obtain directions for developing high power single-frequency Nd-doped fiber laser sources at 9xx nm. To achieve these goals, 1. Nd-doped fiber lasers at 934 nm were investigated. 2. Core-pumped and cladding-pumped Nd-doped fiber amplifiers are also investigated. 3. The simulation of the Nd-doped fiber amplifiers have been done.Type
textElectronic Thesis
Degree Name
M.S.Degree Level
mastersDegree Program
Graduate CollegeOptical Sciences