Show simple item record

dc.contributor.advisorLysecky, Romanen
dc.contributor.authorLizarraga, Adrian
dc.creatorLizarraga, Adrianen
dc.date.accessioned2016-10-03T16:09:55Z
dc.date.available2016-10-03T16:09:55Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/10150/620835
dc.description.abstractThe widespread adoption of embedded computing systems has resulted in the realization of numerous sensing, decision, and control applications with diverse application-specific requirements. However, such embedded systems applications are becoming increasingly difficult to design, simulate, and optimize due to the multitude of interdependent parameters that must be considered to achieve optimal, or near-optimal, performance that meets design constraints. This situation is further exacerbated for data-adaptable embedded systems (DAES) applications due to the dynamic characteristics of the deployment environment and the data streams on which these systems operate. As operating conditions change, these embedded systems must continue to adapt their configuration and composition at runtime in order to meet application requirements. To assist both platform developers and application domain experts, this dissertation presents design and optimization frameworks for the synthesis of runtime adaptable embedded systems. For sensor network applications, we present an initial dynamic profiling and optimization platform that profiles network and sensor node activity to generate optimal node configurations at runtime based on designed-specified application requirements. To support a broader class of DAES applications, we present a modeling and optimization framework that supports the specification of application task flows, data types, and runtime estimation models for the runtime adaptation of task implementations and device mappings. Experimental results for these design and optimization frameworks demonstrate the benefits of dynamic optimization compared to static optimization alternatives. For the presented sensor network and video-based collision avoidance applications, dynamic configurations exhibited improvements of up to 109% and 76%, respectively. Moreover, the performance of the heuristic design space exploration (DSE) algorithms utilized by the runtime optimization frameworks is compared to exhaustive DSE implementations, resulting in speedups of up to 1662X and 544X for the same two applications, respectively.
dc.language.isoen_USen
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.subjectFuzzy Logicen
dc.subjectModelingen
dc.subjectRuntime Optimizationen
dc.subjectSensor Networksen
dc.subjectElectrical & Computer Engineeringen
dc.subjectEmbedded Systemsen
dc.titleModeling and Optimization Frameworks for Runtime Adaptable Embedded Systemsen_US
dc.typetexten
dc.typeElectronic Dissertationen
thesis.degree.grantorUniversity of Arizonaen
thesis.degree.leveldoctoralen
dc.contributor.committeememberLysecky, Romanen
dc.contributor.committeememberAkoglu, Alien
dc.contributor.committeememberSprinkle, Jonathanen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineElectrical & Computer Engineeringen
thesis.degree.namePh.D.en
refterms.dateFOA2018-06-24T12:24:16Z
html.description.abstractThe widespread adoption of embedded computing systems has resulted in the realization of numerous sensing, decision, and control applications with diverse application-specific requirements. However, such embedded systems applications are becoming increasingly difficult to design, simulate, and optimize due to the multitude of interdependent parameters that must be considered to achieve optimal, or near-optimal, performance that meets design constraints. This situation is further exacerbated for data-adaptable embedded systems (DAES) applications due to the dynamic characteristics of the deployment environment and the data streams on which these systems operate. As operating conditions change, these embedded systems must continue to adapt their configuration and composition at runtime in order to meet application requirements. To assist both platform developers and application domain experts, this dissertation presents design and optimization frameworks for the synthesis of runtime adaptable embedded systems. For sensor network applications, we present an initial dynamic profiling and optimization platform that profiles network and sensor node activity to generate optimal node configurations at runtime based on designed-specified application requirements. To support a broader class of DAES applications, we present a modeling and optimization framework that supports the specification of application task flows, data types, and runtime estimation models for the runtime adaptation of task implementations and device mappings. Experimental results for these design and optimization frameworks demonstrate the benefits of dynamic optimization compared to static optimization alternatives. For the presented sensor network and video-based collision avoidance applications, dynamic configurations exhibited improvements of up to 109% and 76%, respectively. Moreover, the performance of the heuristic design space exploration (DSE) algorithms utilized by the runtime optimization frameworks is compared to exhaustive DSE implementations, resulting in speedups of up to 1662X and 544X for the same two applications, respectively.


Files in this item

Thumbnail
Name:
azu_etd_14755_sip1_m.pdf
Size:
4.509Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record