• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Transmyocardial Laser Revascularization and Stem Cell Therapy to Remodel an Infarcted Heart

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14766_sip1_m.pdf
    Size:
    2.728Mb
    Format:
    PDF
    Download
    Author
    Iwanski, Jessika
    Issue Date
    2016
    Keywords
    Heart
    Infarction
    Laser Therapy
    Stem Cells
    TMR
    Medical Pharmacology
    Angina
    Advisor
    Khalpey, Zain
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Transmyocardial revascularization (TMR) has emerged as an additional therapeutic option for patients suffering from diffuse coronary artery disease (CAD), providing immediate angina relief. The current potential of this therapy focuses on the injection of stem cells, in order to create a synergistic angiogenic effect while increasing myocardial repair and regeneration. Although TMR procedures provide increased vascularization within the myocardium, patients suffering from ischemic cardiomyopathy may not benefit from angiogenesis alone. Therefore, the goal of introducing stem cells is to restore the functional state of a failing heart by providing stem cells with a favorable microenvironment that will enhance their engraftment. Since the therapeutic effect of stem cells is dependent on their capacity to survive and retain in the myocardium, laser therapy may provide a strategy for increasing stem cell engraftment. If so, these cells may have the potential to act as mitochondrial donors or as sources of paracrine factors, aiding in the recovery from oxidative stress and providing antioxidant reserves. Furthermore, laser therapy may also play an influential role in regulating cardiac repair and regeneration via epithelial-mesenchymal transition (EMT). By interacting with specific transcription factors TMR may provide another pathway by which it can offer reparative effects. Cumulatively, paracrine release, denervation, and angiogenesis contribute to the therapeutic benefits experienced by TMR patients, including a significant reduction in angina, with increases in myocardial perfusion and survival rates. With the addition of stem cells, these effects may be further augmented, thus providing increased symptomatic relief in patients.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Medical Pharmacology
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.