• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Trace Element Composition of Apatite from Intrusive Rocks in Northeastern Nevada, USA

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14782_sip1_m.pdf
    Size:
    7.034Mb
    Format:
    PDF
    Download
    Author
    Dabbs, Jennifer Marie
    Issue Date
    2016
    Keywords
    Arsenic
    Great Basin
    Mineral Deposits
    Geosciences
    Apatite
    Advisor
    Barton, Mark D.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The apatite crystal structure-A5(TO4)3X-allows for complex substitutions of various minor and trace elements including volatile constituents, rare earth elements, and redox sensitive elements (e.g., As, Mn, Fe, S) (Piccoli and Candela, 1994; Piccoli and Candela, 2002; Pan and Fleet, 2002; Teiber et al., 2015; Harlov, 2015). In this study, apatite grains from 19 intrusions across northeastern Nevada with varied petrogenetic and metallogenic properties were analyzed by electron probe microanalysis (EPMA) to obtain major and trace element abundances. Systematic variations in Sr and REE concentrations in apatite grains from granitic host rocks are the result of competition with pre-existing and coexisting minerals in silicate melts. The presence of zoning in cathodoluminescence colors combined with high Sr concentrations in apatite from many of the Eocene granodiorite rocks suggest magma mixing affected the geochemical evolution in many of the Eocene igneous systems. In addition, high Sr concentrations in apatite grains from Late Cretaceous two-mica granites may reflect significant magmatic input from lower crustal and/or mantle sources despite the felsic nature of these intrusive rocks.A new EPMA analytical routine to measure arsenic down to detection limits of approximately 20 ppm allowed a more extensive characterization of As concentration in igneous apatite than has previously been published. Still, correlations between As and other trace-element concentrations are not evident, which may reflect the simple substitution of As5+ for P5+ in the apatite structure. Petrologic controls on As content include redox state, indicated by the high Asapat/Asbulk-rock in relatively oxidized intrusive rocks. An additional control is competition among other magmatic phases, exsolving aqueous fluids, or sulfide melts, indicated by enrichment of As in apatite cores relative to apatite rims. Past studies on redox-sensitive elements in igneous apatite have focused on Mn and S, but with further investigation, As may also prove to be a key redox-sensitive trace element in apatite for interpreting igneous and hydrothermal processes.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Geosciences
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.