• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Dynamics of Enzymatic Reactions: A Tale of Two Dehydrogenases

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14828_sip1_m.pdf
    Size:
    6.283Mb
    Format:
    PDF
    Download
    Author
    Dzierlenga, Michael W.
    Issue Date
    2016
    Keywords
    Dehydrogenase
    Enzymes
    Hydride Transfer
    QMMM
    Transition Path Sampling
    Chemistry
    Computational Chemistry
    Advisor
    Schwartz, Steven D.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Enzymes direct chemical reactions with precision and speed, making life as we know it possible. How they do this is still not completely understood, but the relatively recent discovery of subpicosecond protein motion coupled to the reaction coordinate has provided a crucial piece of the puzzle. This type of motion is called a rate-promoting vibration (RPV) and has been seen in a number of different enzymatic systems. It typically involves a compression of the active site of the enzyme which lowers the barrier for the reaction to occur. In this work we present a number of studies that probe these motions in two dehydrogenase enzymes, yeast alcohol dehydrogenase (YADH) and homologs of lactate dehydrogenase (LDH). The goal of the study on the reaction of YADH was to probe the role of the protein in proton tunneling in the enzyme, which was suggested to occur from experimental kinetic isotope effect studies. We did this using transition path sampling (TPS), which perturbatively generates ensembles of reactive trajectories to observe transitions between stable states, such as chemical reactions. By applying a quantum method that can account for proton tunneling, centroid molecular dynamics, and generating reactive trajectory ensembles with and without the method, we were able to observe the change in barrier to proton transfer upon application of the tunneling method. We found that there was little change in the barrier, showing that classical over-the-barrier transfer is dominant over tunneling in the proton transfer in YADH. We also applied the knowledge of RPVs to identify a new class of allosteric molecules, which modulate enzymatic reaction not by changing a binding affinity, but by disrupting the reactive motion of enzymes. We showed, through design of a novel allosteric effector for human heart LDH, applying TPS to a system with and without the small molecule bound, and analysis of the reaction coordinate of the reactive trajectory ensemble, that the molecule was able to disrupt the motion of the protein such that it was no longer coupled to the reaction. We also examined the subpicosecond motions of two other LDHs, from Plasmodium falciparum and Cryptosporidium parvum, which evolved separately from previously studied LDHs. We found, using TPS and reaction coordinate identification, that while the LDH from C. parvum had similar dynamics to the earlier LDHs, the LDH from P. falciparum had a earlier transition-state associated with proton transfer, not hydride transfer. This is likely due to this LDH having a larger active site pocket, increasing the amount of motion necessary for proton transfer, and, thus, the barrier to proton transfer. More work is necessary in this system to determine whether the protein is coupled with the search for the reactive conformation for proton transfer. Protein motion coupled to the particle transfer in dehydrogenases plays an important role in their reactions and there is still much work to be done to understand the extent and role of RPVs.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.