• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Health Data Analytics: Data and Text Mining Approaches for Pharmacovigilance

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14841_sip1_m.pdf
    Size:
    3.458Mb
    Format:
    PDF
    Download
    Author
    Liu, Xiao
    Issue Date
    2016
    Keywords
    Health Data Analytics
    Pharmacovigilance
    Text Mining
    Management
    Data Mining
    Advisor
    Chen, Hsinchun
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Pharmacovigilance is defined as the science and activities relating to the detection, assessment, understanding, and prevention of adverse drug events (WHO 2004). Post-approval adverse drug events are a major health concern. They attribute to about 700,000 emergency department visits, 120,000 hospitalizations, and $75 billion in medical costs annually (Yang et al. 2014). However, certain adverse drug events are preventable if detected early. Timely and accurate pharmacovigilance in the post-approval period is an urgent goal of the public health system. The availability of various sources of healthcare data for analysis in recent years opens new opportunities for the data-driven pharmacovigilance research. In an attempt to leverage the emerging healthcare big data, pharmacovigilance research is facing a few challenges. Most studies in pharmacovigilance focus on structured and coded data, and therefore miss important textual data from patient social media and clinical documents in EHR. Most prior studies develop drug safety surveillance systems using a single data source with only one data mining algorithm. The performance of such systems is hampered by the bias in data and the pitfalls of the data mining algorithms adopted. In my dissertation, I address two broad research questions: 1) How do we extract rich adverse drug event related information in textual data for active drug safety surveillance? 2) How do we design an integrated pharmacovigilance system to improve the decision-making process for drug safety regulatory intervention? To these ends, the dissertation comprises three essays. The first essay examines how to develop a high-performance information extraction framework for patient reports of adverse drug events in health social media. I found that medical entity extraction, drug-event relation extraction, and report source classification are necessary components for this task. In the second essay, I address the scalability issue of using social media for pharmacovigilance by proposing a distant supervision approach for information extraction. In the last essay, I develop a MetaAlert framework for pharmacovigilance with advanced text mining and data mining techniques to provide timely and accurate detection of adverse drug reactions. Models, frameworks, and design principles proposed in these essays advance not only pharmacovigilance research, but also more broadly contribute to health IT, business analytics, and design science research.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Management Information Systems
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.