• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The R Chondrite Record of Volatile-Rich Environments in the Early Solar System

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14875_sip1_m.pdf
    Size:
    134.1Mb
    Format:
    PDF
    Download
    Author
    Miller, Kelly E.
    Issue Date
    2016
    Keywords
    Chondrules
    Cosmochemistry
    Meteorites
    Planet Formation
    Sulfides
    Planetary Sciences
    Chondrites
    Advisor
    Lauretta, Dante S.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Chondritic meteorites are undifferentiated fragments of asteroids that contain the oldest solids formed in our Solar System. Their primitive, solar-like chemical compositions indicate that they experienced very little processing following accretion to their parent bodies. As such, they retain the best records of chemical and physical processes active in the protoplanetary disk during planet formation. Chondritic meteorites are depleted relative to the sun in volatile elements such as S and O. In addition to being important components of organic material, these elements exert a strong influence on the behavior of other more refractory species and the composition of planets. Understanding their distribution is therefore of key interest to the scientific community. While the bulk abundance of volatile elements in solid phases present in meteorites is below solar values, some meteorites record volatile-rich gas phases. The Rumuruti (R) chondrites record environments rich in both S and O, making them ideal probes for volatile enhancement in the early Solar System. Disentangling the effects of parent-body processing on pre-accretionary signatures requires unequilibrated meteorite samples. These samples are rare in the R chondrites. Here, I report analyses of unequilibrated clasts in two thin sections from the same meteorite, PRE 95404 (R3.2 to R4). Data include high resolution element maps, EMP chemical analyses from silicate, sulfide, phosphate, and spinel phases, SIMS oxygen isotope ratios of chondrules, and electron diffraction patterns from Cu-bearing phases. Oxygen isotope ratios and chondrule fO2 levels are consistent with type II chondrules in LL chondrites. Chondrule-sized, rounded sulfide nodules are ubiquitous in both thin sections. There are multiple instances of sulfide-silicate relationships that are petrologically similar to compound chondrules, suggesting that sulfide nodules and silicate chondrules formed as coexisting melts. This hypothesis is supported by the presence of phosphate inclusions and Cu-rich lamellae in both sulfide nodules and sulfide assemblages within silicate chondrules. Thermodynamic analyses indicate that sulfide melts reached temperatures up to 1138 °C and fS2 of 2 x 10^(-3) atm. These conditions require total pressures on the order of 1 atm, and a dust- or ice-rich environment. Comparison with current models suggest that either the environmental parameters used to model chondrule formation prior to planetesimal formation should be adjusted to meet this pressure constraint, or R chondrite chondrules may have formed through planetesimal bow shocks or impacts. The pre-accretionary environment recorded by unequilibrated R chondrites was therefore highly sulfidizing, and had fO2 higher than solar composition, but lower than the equilibrated R chondrites.Chalcopyrite is rare in meteorites, but forms terrestrially in hydrothermal sulfide deposits. It was previously reported in the R chondrites. I studied thin sections from PRE 95411 (R3 or R4), PCA 91002 (R3.8 to R5), and NWA 7514 (R6) using Cu X-ray maps and EMP chemical analyses of sulfide phases. I found chalcopyrite in all three samples. TEM electron diffraction data from a representative assemblage in PRE 95411 are consistent with this mineral identification. TEM images and X-ray maps reveal the presence of an oxide vein. A cubanite-like phase was identified in PCA 91002. Electron diffraction patterns are consistent with isocubanite. Cu-rich lamellae in the unequilibrated clasts of PRE 95404 are the presumed precursor materials for chalcopyrite and isocubanite. Diffraction patterns from these precursor phases index to bornite. I hypothesize that bornite formed during melt crystallization prior to accretion. Hydrothermal alteration on the parent body by an Fe-rich aqueous phase between 200 and 300°C resulted in the formation of isocubanite and chalcopyrite. In most instances, isocubanite may have transformed to chalcopyrite and pyrrhotite at temperatures below 210°C. This environment was both oxidizing and sulfidizing, suggesting that the R chondrites record an extended history of volatile-rich interaction. These results indicate that hydrothermal alteration of sulfides on the R chondrite parent body was pervasive and occurred even in low petrologic types. This high temperature aqueous activity is distinct from both the low temperature aqueous alteration of the carbonaceous chondrites and the high temperature, anhydrous alteration of the ordinary chondrites.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.