• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Asymptotics and Dynamics of Map Enumeration Problems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14889_sip1_m.pdf
    Size:
    983.0Kb
    Format:
    PDF
    Download
    Author
    Brown, Tova
    Issue Date
    2016
    Keywords
    Mathematics
    Advisor
    Ercolani, Nicholas M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    We solve certain three-term recurrence relations for generating functions of map enumeration problems. These are combinatorial maps, an embedding of a graph into a surface in a particular way. The generating functions enumerate the maps according to an appropriate notion of a distance or height in the map. These problems were studied and the recurrence relations derived in [BDFG03] and [BM06].By viewing the three-term recurrence as giving a two-dimensional discrete dynamical system, these combinatorial problems are set in the context of discrete dynamical systems and integrable systems theory. The integrable nature of the system was made apparent by numerical study, and is confirmed by recognition that the recurrences are autonomous discrete Painleve-I equations. The autonomous discrete Painleve equations are known to be instances of the QRT Mapping, named for Quispel, Roberts, and Thompson [QRT88, QRT89], an integrable structure with explicitly-given invariant. Level sets of such invariants are in general elliptic curves, and thus orbits in the dynamical systems can be parametrized through elliptic functions. The solution to a recurrence relation for combinatorial generating functions is rigorously derived from the general elliptic parametrization of the dynamical system, as the combinatorial initial condition indicates that the combinatorial orbit actually lies on a stable manifold of a hyperbolic fixed point of the system. This special orbit thus lies on a separatrix of the system, which is given by a degeneration in the elliptic nature of the level sets of the invariant function. These solutions have a particularly nice algebraic form, which is seen to be a consequence of the degeneration of the elliptic parametrization. The framework and method are general, applicable to any combinatorial enumeration problem that arises with a similar QRT-type structure.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Mathematics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.