• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Exploring G-Protein-Coupled Receptors Regulation, Specificity and Controllability of Exosomes Release in the Neuronal Cell Line SH-SY5Y

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14949_sip1_m.pdf
    Size:
    11.65Mb
    Format:
    PDF
    Download
    Author
    Sadideen, Doraid
    Issue Date
    2016
    Keywords
    Exosomes
    Parkinson's Disease
    Vesicles
    Physiological Sciences
    Alpha-Synuclein
    Advisor
    Falk, Torsten
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Parkinson's disease is a neurodegenerative disease characterized by the buildup of aggregated and spread of misfolded alpha-synuclein. How the misfolded alpha-synuclein contributing to the toxicity and death of neuronal cells has been the focal point of research. The spread of alpha-synuclein has been attributed to many mechanisms, one of which is via cell-derived vesicles called exosomes. This project aims to examine the controllability of exosome release. SH-SY5Y, MCF-7 and CHO-K1 cells were transfected with dopamine receptor 3-green fluorescent protein, G-protein receptor 143 or green fluorescent protein and treated with either dopamine or L-DOPA. Medium was harvested and subjected to ultracentrifugation and a silver stain and western blot were performed. There was no significant difference in the total protein in the exosome fraction lanes between the treatment groups or within them. Another aim was to test the specificity of exosomes. Exosomes isolated from SH-SY5Y or MCF-7 were labeled with Exo-Red dye and introduced to wells containing SH-SY5Y, MCF-7 and CHO-K1 cells at room temperature and -4C. At room temperature, exosomes were observed intercellular in all of the cell lines, however, they did not deliver their content. At -4C exosome uptake was halted and they remained on the surface of the cells. Exo-Red labeled SH-SY5Y exosomes were treated with proteinase K and were introduced to CHO-K1 cells at -4C and room temperature. CHO-K1 did not take up exosomes, suggesting exosomes contain one or more necessary proteins needed to interact with the cellular membrane to initiate internalization. CHO-K1 cells were treated with versene to examine the involvement of integrin proteins. Exo-Red labeled SH-SY5Y exosomes were trapped on the surface of CHO-K1 after versene treatment. Lastly, Exo-Red labeled SH-SY5Y exosomes were biotinylated and magnetically captured then introduced to SH-SY5Y and MCF-7 cells and a silver stain and a biotinylated blot were performed. MCF-7 bound more Exo-Red labeled SH-SY5Y exosomes.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Physiological Sciences
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.