THE MASS AND SIZE DISTRIBUTION OF PLANETESIMALS FORMED BY THE STREAMING INSTABILITY. I. THE ROLE OF SELF-GRAVITY
Affiliation
Univ Arizona, Dept AstronUniv Arizona, Steward Observ
Issue Date
2016-05-05
Metadata
Show full item recordPublisher
IOP PUBLISHING LTDCitation
THE MASS AND SIZE DISTRIBUTION OF PLANETESIMALS FORMED BY THE STREAMING INSTABILITY. I. THE ROLE OF SELF-GRAVITY 2016, 822 (1):55 The Astrophysical JournalJournal
The Astrophysical JournalRights
© 2016. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We study the formation of planetesimals in protoplanetary disks from the gravitational collapse of solid over-densities generated via the streaming instability. To carry out these studies, we implement and test a particle-mesh self-gravity module for the ATHENA code that enables the simulation of aerodynamically coupled systems of gas and collisionless self-gravitating solid particles. Upon employment of our algorithm to planetesimal formation simulations, we find that (when a direct comparison is possible) the ATHENA simulations yield predicted planetesimal properties that agree well with those found in prior work using different numerical techniques. In particular, the gravitational collapse of streaming-initiated clumps leads to an initial planetesimal mass function that is well-represented by a power law, dN / dM(p) proportional to M-p(-p), with p similar or equal to 1.6 +/- 0.1, which equates to a differential size distribution of dN / dR(p) proportional to R-p(-q), with q similar or equal to 2.8 +/- 0.1. We find no significant trends with resolution from a convergence study of up to 512(3) grid zones and N-par approximate to 1.5 x 10(8) particles. Likewise, the power-law slope appears indifferent to changes in the relative strength of self-gravity and tidal shear, and to the time when (for reasons of numerical economy) self-gravity is turned on, though the strength of these claims is limited by small number statistics. For a typically assumed radial distribution of minimum mass solar nebula solids (assumed here to have dimensionless stopping time tau = 0.3), our results support the hypothesis that bodies on the scale of large asteroids or Kuiper Belt Objects could have formed as the high-mass tail of a primordial planetesimal population.ISSN
1538-4357Version
Final published versionSponsors
NASA [NNX13AI58G, NNX16AB42G, NAS 5-26555]; NSF [AST 1313021]; Space Telescope Science Institute [HST-AR-12814]; XSEDE grant [TG-AST120062]; California Institute of Technology (Caltech); Jet Propulsion Laboratory (JPL) - NASAAdditional Links
http://stacks.iop.org/0004-637X/822/i=1/a=55?key=crossref.f659215513e0a7285c31b70fae3e4217ae974a485f413a2113503eed53cd6c53
10.3847/0004-637X/822/1/55