Independent Co-Option of a Tailed Bacteriophage into a Killing Complex in Pseudomonas
Name:
mBio-2015-Hockett-.pdf
Size:
1.084Mb
Format:
PDF
Description:
Final Published Version
Affiliation
School of Plant Sciences, University of ArizonaDepartment of Entomology and Center for Insect Science, University of Arizona
Issue Date
2015-08-11
Metadata
Show full item recordPublisher
American Society for MicrobiologyCitation
Independent Co-Option of a Tailed Bacteriophage into a Killing Complex in Pseudomonas 2015, 6 (4):e00452-15 mBioJournal
mBioRights
Copyright © 2015 Hockett et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Competition between microbes is widespread in nature, especially among those that are closely related. To combat competitors, bacteria have evolved numerous protein-based systems (bacteriocins) that kill strains closely related to the producer. In characterizing the bacteriocin complement and killing spectra for the model strain Pseudomonas syringae B728a, we discovered that its activity was not linked to any predicted bacteriocin but is derived from a prophage. Instead of encoding an active prophage, this region encodes a bacteriophage-derived bacteriocin, termed an R-type syringacin. This R-type syringacin is striking in its convergence with the well-studied R-type pyocin of P. aeruginosa in both genomic location and molecular function. Genomic alignment, amino acid percent sequence identity, and phylogenetic inference all support a scenario where the R-type syringacin has been co-opted independently of the R-type pyocin. Moreover, the presence of this region is conserved among several other Pseudomonas species and thus is likely important for intermicrobial interactions throughout this important genus.Description
UA Open Access Publishing FundNote
Open access journalISSN
2150-7511Version
Final published versionAdditional Links
http://mbio.asm.org/lookup/doi/10.1128/mBio.00452-15ae974a485f413a2113503eed53cd6c53
10.1128/mBio.00452-15
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2015 Hockett et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license.