• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Analytical Model for Relating FPGA Logic and Routing Architecture Parameters to Post-Routing Wirelength

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14724_sip1_m.pdf
    Size:
    629.6Kb
    Format:
    PDF
    Download
    Author
    Soni, Arpit
    Issue Date
    2016
    Keywords
    Electrical & Computer Engineering
    Advisor
    Akoglu, Ali
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 09-Jun-2017
    Abstract
    Analytical models have been introduced for rapidly evaluating the impact of architectural design choices on FPGA performance through model-based trend analysis. Modeling wirelength is a critical problem since channel width can be expressed as a function of total net length in a design, which is an indicator of routability for an FPGA. Furthermore, performance indicators, such as critical path delay and power consumption, are functions of net capacitance, which in turn is a function of net length. The analytical models to this date mainly originate from extracting circuit characteristics from post-placement stage of the CAD flow, which instills a strong binding between the model and the optimization objective of the CAD flow. Furthermore, these models primarily take only logic architecture features into account. In this study, we present a post-routing wirelength model that takes into account both logic and routing architectural parameters, and that does not rely on circuit characteristics extracted from any stage of the FPGA CAD flow. We apply a methodological approach to model parameter tuning as opposed to relying on a curve-fitting method, and show that our model accurately captures the experimental trends in wirelength with respect to changes in logic and routing architecture parameters individually. We demonstrate that the model accuracy is not sacrificed even if the performance objective of the CAD flow changes or the algorithms used by individual stages of the CAD flow (technology mapping, clustering, and routing) change. We swap the training and validation benchmarks, and show that our model development approach is robust and the model accuracy is not sacrificed. We evaluate our model based on new set of benchmarks that are not part of the training and validation benchmarks, and demonstrate its superiority over the state of the art. Based on the swapping based experiments, we show that the model parameters take values in a fixed range. We verify that this range holds its validity even for benchmarks that are not part of the training and validation benchmarks. We finally show that our model maintains a good estimation of the empirical trends even when very large values are used for the logic block architecture parameter.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.