Show simple item record

dc.contributor.authorFarahi, Arya
dc.contributor.authorEvrard, August E.
dc.contributor.authorRozo, Eduardo
dc.contributor.authorRykoff, Eli S.
dc.contributor.authorWechsler, Risa H.
dc.date.accessioned2016-11-29T00:03:23Z
dc.date.available2016-11-29T00:03:23Z
dc.date.issued2016-08-21
dc.identifier.citationGalaxy cluster mass estimation from stacked spectroscopic analysis 2016, 460 (4):3900 Monthly Notices of the Royal Astronomical Societyen
dc.identifier.issn0035-8711
dc.identifier.issn1365-2966
dc.identifier.doi10.1093/mnras/stw1143
dc.identifier.urihttp://hdl.handle.net/10150/621426
dc.description.abstractWe use simulated galaxy surveys to study: (i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and (ii) the accuracy of a mean dynamical cluster mass, M-sigma(lambda), derived from stacked pairwise spectroscopy of clusters with richness lambda. Using similar to 130 000 galaxy pairs patterned after the Sloan Digital Sky Survey (SDSS) redMaPPer cluster sample study of Rozo et al., we show that the pairwise velocity probability density function of central-satellite pairs with m(i) < 19 in the simulation matches the form seen in Rozo et al. Through joint membership matching, we deconstruct the main Gaussian velocity component into its halo contributions, finding that the top-ranked halo contributes similar to 60 per cent of the stacked signal. The halo mass scale inferred by applying the virial scaling of Evrard et al. to the velocity normalization matches, to within a few per cent, the log-mean halo mass derived through galaxy membership matching. We apply this approach, along with miscentring and galaxy velocity bias corrections, to estimate the log-mean matched halo mass at z = 0.2 of SDSS redMaPPer clusters. Employing the velocity bias constraints of Guo et al., we find aEuroln (M-200c)|lambda aEuro parts per thousand = ln (< M-30) + alpha(m) ln (lambda/30) with M-30 = 1.56 +/- 0.35 x 10(14) M-aS (TM) and alpha(m) = 1.31 +/- 0.06(stat) +/- 0.13(sys). Systematic uncertainty in the velocity bias of satellite galaxies overwhelmingly dominates the error budget.
dc.description.sponsorshipDOE Office of Science [DE-SC0007859]; National Science Foundation [NSF-AST-1211838]en
dc.language.isoenen
dc.publisherOXFORD UNIV PRESSen
dc.relation.urlhttp://mnras.oxfordjournals.org/lookup/doi/10.1093/mnras/stw1143en
dc.rights© 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Societyen
dc.subjectmethods: statisticalen
dc.subjectgalaxies: clusters: generalen
dc.subjectgalaxies: haloesen
dc.titleGalaxy cluster mass estimation from stacked spectroscopic analysisen
dc.typeArticleen
dc.contributor.departmentUniv Arizona, Dept Physen
dc.identifier.journalMonthly Notices of the Royal Astronomical Societyen
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
refterms.dateFOA2018-06-14T16:03:04Z
html.description.abstractWe use simulated galaxy surveys to study: (i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and (ii) the accuracy of a mean dynamical cluster mass, M-sigma(lambda), derived from stacked pairwise spectroscopy of clusters with richness lambda. Using similar to 130 000 galaxy pairs patterned after the Sloan Digital Sky Survey (SDSS) redMaPPer cluster sample study of Rozo et al., we show that the pairwise velocity probability density function of central-satellite pairs with m(i) < 19 in the simulation matches the form seen in Rozo et al. Through joint membership matching, we deconstruct the main Gaussian velocity component into its halo contributions, finding that the top-ranked halo contributes similar to 60 per cent of the stacked signal. The halo mass scale inferred by applying the virial scaling of Evrard et al. to the velocity normalization matches, to within a few per cent, the log-mean halo mass derived through galaxy membership matching. We apply this approach, along with miscentring and galaxy velocity bias corrections, to estimate the log-mean matched halo mass at z = 0.2 of SDSS redMaPPer clusters. Employing the velocity bias constraints of Guo et al., we find aEuroln (M-200c)|lambda aEuro parts per thousand = ln (< M-30) + alpha(m) ln (lambda/30) with M-30 = 1.56 +/- 0.35 x 10(14) M-aS (TM) and alpha(m) = 1.31 +/- 0.06(stat) +/- 0.13(sys). Systematic uncertainty in the velocity bias of satellite galaxies overwhelmingly dominates the error budget.


Files in this item

Thumbnail
Name:
MNRAS_2016_Farahi_3900_12.pdf
Size:
2.241Mb
Format:
PDF
Description:
FInal Published Version

This item appears in the following Collection(s)

Show simple item record