• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Terrestrial Precipitation and Soil Moisture: A Case Study over Southern Arizona and Data Development

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14977_sip1_m.pdf
    Size:
    7.877Mb
    Format:
    PDF
    Download
    Author
    Stillman, Susan
    Issue Date
    2016
    Keywords
    Precipitation
    Soil Moisture
    Hydrometeorology
    Hydrology
    Advisor
    Zeng, Xubin
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Quantifying climatological precipitation and soil moisture as well as interannual variability and trends requires extensive observation. This work focuses on the analysis of available precipitation and soil moisture data and the development of new ways to estimate these quantities. Precipitation and soil moisture characteristics are highly dependent on the spatial and temporal scales. We begin at the point scale, examining hourly precipitation and soil moisture at individual gauges. First, we focus on the Walnut Gulch Experimental Watershed (WGEW), a 150 km² area in southern Arizona. The watershed has been measuring rainfall since 1956 with a very high density network of approximately 0.6 gauges per km². Additionally, there are 19 soil moisture probes at 5 cm depth with data starting in 2002. In order to extend the measurement period, we have developed a water balance model which estimates monsoon season (Jul-Sep) soil moisture using only precipitation for input, and calibrated so that the modeled soil moisture fits best with the soil moisture measured by each of the 19 probes from 2002-2012. This observationally constrained soil moisture is highly correlated with the collocated probes (R=0.88), and extends the measurement period from 10 to 56 years and the number of gauges from 19 to 88. Then, we focus on the spatiotemporal variability within the watershed and the ability to estimate area averaged quantities. Spatially averaged precipitation and observationally constrained soil moisture from the 88 gauges is then used to evaluate various gridded datasets. We find that gauge-based precipitation products perform best followed by reanalyses and then satellite-based products. Coupled Model Intercomparison Project Phase 5 (CMIP5) models perform the worst and overestimate cold season precipitation while offsetting the monsoon peak precipitation forward or backward by a month. Satellite-based soil moisture is the best followed by land data assimilation systems and reanalyses. We show that while WGEW is small compared to the grid size of many of the evaluated products, unlike scaling from point to area, the effect of scaling from smaller to larger area is small. Finally, we focus on global precipitation. Global monthly gauge based precipitation data has become widely available in recent years and is necessary for analyzing the climatological and anomaly precipitation fields as well as for calibrating and evaluating other gridded products such as satellite-based and modeled precipitation. However, frequency and intensity of precipitation are also important in the partitioning of water and energy fluxes. Therefore, because daily and sub-daily observed precipitation is limited to recent years, the number of raining days per month (N) is needed. We show that the only currently available long-term N product, developed by the Climate Research Unit (CRU), is deficient in certain areas, particularly where CRU gauge data is sparse. We then develop a new global 110-year N product, which shows significant improvement over CRU using three regional daily precipitation products with far more gauges than are used in CRU.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Hydrometeorology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.