• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Non-Abelian Composition Factors of m-Rational Groups

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14762_sip1_m.pdf
    Size:
    1006.Kb
    Format:
    PDF
    Download
    Author
    Trefethen, Stephen Joseph
    Issue Date
    2016
    Keywords
    Mathematics
    Advisor
    Tiep, Pham H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In this thesis, we discuss several problems in the representation theory of finite groups of Lie type. In Chapter 2, we will give essential background material that will be useful for the entirety of the thesis. We will investigate the construction of groups of Lie type, as well as their representations. We will define the field of values of a character afforded by a representation, and state useful results concerning these fields. In Chapter 3, we examine Zsigmondy primes and their existence, a necessary ingredient in proving our main results. In Chapters 4 and 5, we describe our main results in the ordinary and modular cases, which we now summarize. A finite group G is said to be m-rational, for a fixed positive integer m, if [Q((x)) : Q]|m for any irreducible character x∈Irr(G). In 1976, R. Gow studied the structure of solvable rational groups (i.e. m = 1), and found that the possible composition factors of a solvable rational group are cyclic groups of prime order p ∈ {2,3,5}[22]. Just over a decade later, W. Feit and G. Seitz classified the possible non-abelian composition factors of (non-solvable) rational groups. In 2008, J. Thompson found an upper bound of p ≤ 13 for the order of the possible cyclic composition factors of an arbitrary rational group, and conjectured that the bound can be improved to p ≤ 5. More recently, J. McKay posed the question of determining the structure of quadratic rational groups (i.e. m = 2). J. Tent studied the cyclic composition factors of solvable quadratic rational groups in 2013. In Chapter 4, we answer McKay's question concerning non-abelian composition factors, and generalize our results to non-solvable m-rational groups. Modular character theory was founded by R. Brauer in the 1930's, and has been useful in proving historical results including the classification of finite simple groups. In Chapter 5, we prove the modular version of our results. Though our conclusions are similar to those found in the complex case, the methods for proving the results are typically much more complicated.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Mathematics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.