Show simple item record

dc.contributor.authorGanguly, Jibamitra
dc.contributor.authorTirone, Massimiliano
dc.contributor.authorDomanik, Kenneth
dc.date.accessioned2016-12-07T23:17:57Z
dc.date.available2016-12-07T23:17:57Z
dc.date.issued2016-11
dc.identifier.citationCooling rates of LL, L and H chondrites and constraints on the duration of peak thermal conditions: Diffusion kinetic modeling and implications for fragmentation of asteroids and impact resetting of petrologic types 2016, 192:135 Geochimica et Cosmochimica Actaen
dc.identifier.issn00167037
dc.identifier.doi10.1016/j.gca.2016.07.030
dc.identifier.urihttp://hdl.handle.net/10150/621538
dc.description.abstractWe have carried out detailed thermometric and cooling history studies of several LL-, L- and H-chondrites of petrologic types 5 and 6. Among the selected samples, the low-temperature cooling of St. Severin (LL6) has been constrained in an earlier study by thermochronological data to an average rate of similar to 2.6 degrees C/My below 500 degrees C. However, numerical simulations of the development of Fe-Mg profiles in Opx-Cpx pairs using this cooling rate grossly misfit the measured compositional profiles. Satisfactory simulation of the latter and low temperature thermochronological constraints requires a two-stage cooling model with a cooling rate of similar to 50-200 degrees C/ky from the peak metamorphic temperature of similar to 875 degrees C down to 450 degrees C, and then transitioning to very slow cooling with an average rate of similar to 2.6 degrees C/My. Similar rapid high temperature cooling rates (200-600 degrees C/ky) are also required to successfully model the compositional profiles in the Opx-Cpx pairs in the other samples of L5, L6 chondrites. For the H-chondrite samples, the low temperature cooling rates were determined earlier to be 10-20 degrees C/My by metallographic method. As in St. Severin, these cooling rates grossly misfit the compositional profiles in the Opx-Cpx pairs. Modeling of these profiles requires very rapid cooling, similar to 200-400 degrees C/ky, from the peak temperatures (similar to 810-830 degrees C), transitioning to the metallographic rates at similar to 450-500 degrees C. We interpret the rapid high temperature cooling rates to the exposure of the samples to surface or near surface conditions as a result of fragmentation of the parent body by asteroidal impacts. Using the thermochronological data, the timing of the presumed impact is constrained to be similar to 4555-4560 My before present for St. Severin. We also deduced similar two stage cooling models in earlier studies of H-chondrites and mesosiderites that could be explained, using the available geochronological data, by impact induced fragmentation at around the same time. Diffusion kinetic analysis shows that if a lower petrological type got transformed by the thermal effect of shock impacts to reflect higher metamorphic temperature, as has been suggested as a possibility, then the peak temperatures would have had to be sustained for at least 10 ky and 80 ky, respectively, for transformation to the petrologic types 6 and 4. Finally, we present a model that reconciles textural data supporting an onion-shell parent body of H-chondrites with rapid cooling rate at high temperature caused by impact induced disturbance, and also discuss alternatives to the onion shell parent body model. (C) 2016 Elsevier Ltd. All rights reserved.
dc.description.sponsorshipNASA [NNX14AG28G]en
dc.language.isoenen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen
dc.relation.urlhttp://linkinghub.elsevier.com/retrieve/pii/S0016703716304215en
dc.rights© 2016 Elsevier Ltd. All rights reserved.en
dc.subjectChondritesen
dc.subjectCooling ratesen
dc.subjectImpacten
dc.subjectParent bodyen
dc.subjectMetamorphismen
dc.titleCooling rates of LL, L and H chondrites and constraints on the duration of peak thermal conditions: Diffusion kinetic modeling and implications for fragmentation of asteroids and impact resetting of petrologic typesen
dc.typeArticleen
dc.contributor.departmentUniv Arizona, Dept Geoscien
dc.contributor.departmentUniv Arizona, Lunar & Planetary Laben
dc.identifier.journalGeochimica et Cosmochimica Actaen
dc.description.noteAvailable online 2 August 2016; 24 Month Embargo.en
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal accepted manuscripten
html.description.abstractWe have carried out detailed thermometric and cooling history studies of several LL-, L- and H-chondrites of petrologic types 5 and 6. Among the selected samples, the low-temperature cooling of St. Severin (LL6) has been constrained in an earlier study by thermochronological data to an average rate of similar to 2.6 degrees C/My below 500 degrees C. However, numerical simulations of the development of Fe-Mg profiles in Opx-Cpx pairs using this cooling rate grossly misfit the measured compositional profiles. Satisfactory simulation of the latter and low temperature thermochronological constraints requires a two-stage cooling model with a cooling rate of similar to 50-200 degrees C/ky from the peak metamorphic temperature of similar to 875 degrees C down to 450 degrees C, and then transitioning to very slow cooling with an average rate of similar to 2.6 degrees C/My. Similar rapid high temperature cooling rates (200-600 degrees C/ky) are also required to successfully model the compositional profiles in the Opx-Cpx pairs in the other samples of L5, L6 chondrites. For the H-chondrite samples, the low temperature cooling rates were determined earlier to be 10-20 degrees C/My by metallographic method. As in St. Severin, these cooling rates grossly misfit the compositional profiles in the Opx-Cpx pairs. Modeling of these profiles requires very rapid cooling, similar to 200-400 degrees C/ky, from the peak temperatures (similar to 810-830 degrees C), transitioning to the metallographic rates at similar to 450-500 degrees C. We interpret the rapid high temperature cooling rates to the exposure of the samples to surface or near surface conditions as a result of fragmentation of the parent body by asteroidal impacts. Using the thermochronological data, the timing of the presumed impact is constrained to be similar to 4555-4560 My before present for St. Severin. We also deduced similar two stage cooling models in earlier studies of H-chondrites and mesosiderites that could be explained, using the available geochronological data, by impact induced fragmentation at around the same time. Diffusion kinetic analysis shows that if a lower petrological type got transformed by the thermal effect of shock impacts to reflect higher metamorphic temperature, as has been suggested as a possibility, then the peak temperatures would have had to be sustained for at least 10 ky and 80 ky, respectively, for transformation to the petrologic types 6 and 4. Finally, we present a model that reconciles textural data supporting an onion-shell parent body of H-chondrites with rapid cooling rate at high temperature caused by impact induced disturbance, and also discuss alternatives to the onion shell parent body model. (C) 2016 Elsevier Ltd. All rights reserved.


Files in this item

Thumbnail
Name:
Chondrites_final.pdf
Size:
270.5Kb
Format:
PDF
Description:
Final Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record