Show simple item record

dc.contributor.advisorChorover, Jonen
dc.contributor.authorTran, Thien
dc.creatorTran, Thienen
dc.date.accessioned2016-12-09T02:49:25Z
dc.date.available2016-12-09T02:49:25Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/10150/621559
dc.description.abstractPerfluorinated compounds (PFCs) are a class emerging contaminants that have been implicated in bladder cancer and other human health problems. Due to the widespread exposure to humans, persistence in the environment, and their negative effects on human health, we need to develop a treatment method to degrade these chemicals into harmless species. Perfluorooctanoic acid (PFOA, C₈HF₁₅O₂) is one of the top representatives of PFCs commonly reported to be found in water sources, hence it was chosen as the model compound and focus in this project. We examined an iron-activated persulfate oxidation (IAPO) method to decompose aqueous PFOA, and tested the reaction under various conditions, including: oxic, anoxic, and anoxic/dark conditions. We observed 𝑐𝑎. 64% of PFOA (beginning with solution phase concentration fo 𝑐𝑎. 1.64*10⁻⁶ mol L⁻¹) was transformed after four hours under anoxic conditions. This was about seven times higher than measured under oxic conditions, and about five times higher than anoxic/dark conditions. Therefore, we concluded that IAPO can decompose PFOA at 25 °C, the ambient condition temperature. This method can potentially be used as an inexpensive and environmentally-friendly PFOA remediation method, with potential application to other PFCs in groundwater and soil. In addition, this method may be applicable for surface water sources such as potable water reservoirs, waste water effluent, and extracted groundwater.
dc.language.isoen_USen
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.subjectSoil, Water & Environmental Scienceen
dc.titleDegradation of Aqueous Perfluorooctanoic Acid by Iron-Activated Persulfate Oxidationen_US
dc.typetexten
dc.typeElectronic Thesisen
thesis.degree.grantorUniversity of Arizonaen
thesis.degree.levelmastersen
dc.contributor.committeememberBrusseau, Marken
dc.contributor.committeememberAbrell, Leifen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineSoil, Water and Environmental Scienceen
thesis.degree.nameM.S.en
dc.description.admin-noteThesis not available (per author's request) on deposit; contacted by author 25-May-2021 to release the thesis, Kimberly
refterms.dateFOA2021-05-25T18:28:56Z
html.description.abstractPerfluorinated compounds (PFCs) are a class emerging contaminants that have been implicated in bladder cancer and other human health problems. Due to the widespread exposure to humans, persistence in the environment, and their negative effects on human health, we need to develop a treatment method to degrade these chemicals into harmless species. Perfluorooctanoic acid (PFOA, C₈HF₁₅O₂) is one of the top representatives of PFCs commonly reported to be found in water sources, hence it was chosen as the model compound and focus in this project. We examined an iron-activated persulfate oxidation (IAPO) method to decompose aqueous PFOA, and tested the reaction under various conditions, including: oxic, anoxic, and anoxic/dark conditions. We observed 𝑐𝑎. 64% of PFOA (beginning with solution phase concentration fo 𝑐𝑎. 1.64*10⁻⁶ mol L⁻¹) was transformed after four hours under anoxic conditions. This was about seven times higher than measured under oxic conditions, and about five times higher than anoxic/dark conditions. Therefore, we concluded that IAPO can decompose PFOA at 25 °C, the ambient condition temperature. This method can potentially be used as an inexpensive and environmentally-friendly PFOA remediation method, with potential application to other PFCs in groundwater and soil. In addition, this method may be applicable for surface water sources such as potable water reservoirs, waste water effluent, and extracted groundwater.


Files in this item

Thumbnail
Name:
azu_etd_14874_sip1_m.pdf
Size:
691.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record