• Login
    View Item 
    •   Home
    • Colleges, Departments, and Organizations
    • Optical Sciences
    • Optical Sciences Technical Reports
    • View Item
    •   Home
    • Colleges, Departments, and Organizations
    • Optical Sciences
    • Optical Sciences Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    BAND-UNLIMITED RECONSTRUCTION OF OPTICAL OBJECTS AND SPECTRAL SOURCES

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_QC_351_A7_no18_w.pdf
    Size:
    2.360Mb
    Format:
    PDF
    Download
    Author
    Frieden, B. Roy
    Issue Date
    1967-06-16
    Keywords
    Optics.
    
    Metadata
    Show full item record
    Publisher
    Optical Sciences Center, University of Arizona (Tucson, Arizona)
    Rights
    Copyright © Arizona Board of Regents
    Collection Information
    This title from the Optical Sciences Technical Reports collection is made available by the College of Optical Sciences and the University Libraries, The University of Arizona. If you have questions about titles in this collection, please contact repository@u.library.arizona.edu.
    Abstract
    This paper derives a method for digitally reconstructing any two-dimensional, partially coherent, polychromatic object from experimental knowledge of the image and point spread function. In the absence of noise, the reconstruction is perfect. The object must lie wholly within a known region of the object plane. The optics may be generally coated and tilted, and may be aberrated to any extent. As an illustration, the reconstruction process is applied to the problem of resolving double stars. The reconstruction scheme is also used to correct the output of a conventional spectrometer for instrument broadening, and to correct the output of a Fourier -transform spectroscope for finite extent of the interferogram. Practical use of the method requires the calculation of prolate spheroidal wavefunctions and eigenvalues. The effect of noise upon the accuracy of reconstruction is analytically computed. It is shown that periodic noise and piecewise-continuous noise both cause zero error at all points in the reconstruction, except at the sampling points, where the error is theoretically infinite. Bandwidth -limited noise is shown to be indistinguishable from the object.
    Description
    QC 351 A7 no. 18
    Series/Report no.
    Optical Sciences Technical Report 18
    Collections
    Optical Sciences Technical Reports

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.