• Login
    View Item 
    •   Home
    • Colleges, Departments, and Organizations
    • Optical Sciences
    • Optical Sciences Technical Reports
    • View Item
    •   Home
    • Colleges, Departments, and Organizations
    • Optical Sciences
    • Optical Sciences Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    OPTIMIZATION AND EVALUATION OF MANUFACTURING TOLERANCES OF A THREE-MIRROR ASPHERIC CAMERA

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_QC_351_A7_no61_w.pdf
    Size:
    6.021Mb
    Format:
    PDF
    Download
    Author
    Van Workum, John A.
    Issue Date
    1971-01-15
    Keywords
    Optics.
    Optical design
    Mirror systems
    Tolerance analysis
    
    Metadata
    Show full item record
    Publisher
    Optical Sciences Center, University of Arizona (Tucson, Arizona)
    Rights
    Copyright © Arizona Board of Regents
    Collection Information
    This title from the Optical Sciences Technical Reports collection is made available by the College of Optical Sciences and the University Libraries, The University of Arizona. If you have questions about titles in this collection, please contact repository@u.library.arizona.edu.
    Abstract
    In an attempt to design a three -mirror aspheric camera, a procedure was developed to arrive at a design with a minimum obscuration ratio. It was found that, in some cases, the sky baffling became the diffracting obscuration rather than the obscuration caused by the secondary. The procedure allowed for this and was able to select a system with the smallest diffracting obscuration in the pupil. Initially, two designs were selected and optimized through the use of aspheric surfaces. The designs represented two extremes in that one had much faster surfaces than the other. The fast mirror system was easier to optimize, performed better, and had the shorter over -all length. Further, evaluation of manufacturing errors on the fast mirror design showed that an acceptable level of performance could be expected if the errors were kept small. The maximum errors are spacing errors ±0.0005 in. tilt of surface errors ±0.001 /D in. radii of curvature errors ±0.125 in. where D is the diameter of the mirror surface.
    Description
    QC 351 A7 no. 61
    Series/Report no.
    Optical Sciences Technical Report 61
    Collections
    Optical Sciences Technical Reports

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.