• Login
    View Item 
    •   Home
    • Colleges, Departments, and Organizations
    • Optical Sciences
    • Optical Sciences Technical Reports
    • View Item
    •   Home
    • Colleges, Departments, and Organizations
    • Optical Sciences
    • Optical Sciences Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Chirped Pulses in Laser Amplifiers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_QC_351_A7_no80_w.pdf
    Size:
    11.86Mb
    Format:
    PDF
    Download
    Author
    Gieszelmann, Edward L.
    Issue Date
    1973-06
    Keywords
    Optics.
    Lasers
    
    Metadata
    Show full item record
    Publisher
    Optical Sciences Center, University of Arizona (Tucson, Arizona)
    Rights
    Copyright © Arizona Board of Regents
    Collection Information
    This title from the Optical Sciences Technical Reports collection is made available by the College of Optical Sciences and the University Libraries, The University of Arizona. If you have questions about titles in this collection, please contact repository@u.library.arizona.edu.
    Abstract
    This dissertation presents a theoretical investigation into the production, evolution, and asymptotic form of chirped pulses in homogeneously and inhomogeneously broadened laser amplifiers. Amplifier equations of motion are obtained in a form appropriate for dealing with such frequency-modulated pulses. The transient response of laser amplifiers to variously chirped Gaussian input pulses is studied parametrically using numerical solutions of the amplifier equations. The chirping mechanisms of the intensity dependence (Kerr effect) and the quadratic frequency dependence of the index of refraction are discussed briefly, as are the chirps produced by them and the amplification of Gaussian pulses in their presence. The amplifier whose host exhibits these dispersive effects is treated as a sequence of pairs of slices. One of each pair amplifies and exhibits the Kerr effect; the other has an index with a quadratic frequency dependence. This slice model is used to obtain steadystate pulses in both homogeneously and inhomogeneously broadened amplifiers whose host indexes have a quadratic frequency dependence. The steady-state pulse characteristics are determined as functions of amplifier parameters and the index curvature. The principal results are as follows: The homogeneously broadened amplifier responds predominately to the temporal character of a chirped input pulse whereas the inhomogeneously broadened amplifier response depends primarily upon the pulse spectrum. Of three important concepts (area theorem, echoes, and optical nutation) used to describe unchirped pulse amplification in inhomogeneously broadened media, only photon echo is useful when pulses are more than slightly chirped. The presence of the Kerr effect can produce significant chirps on large pulses. Amplification in the presence of the Kerr effect produces pulses strikingly similar to experimental results. Quadratic frequency dependence in the index has very little influence on most pulses in short amplifiers but has a cumulative effect in long amplifiers and laser oscillators. Chirped steady-state pulses exist in both homogeneously and inhomogeneously broadened amplifiers when the host index has such frequency dependence. In the homogeneously broadened case, they exist at relative gain levels dramatically below other theoretical predictions. They occur in the inhomogeneously broadened case only for the smaller index curvatures.
    Description
    QC 351 A7 no. 80
    Series/Report no.
    Optical Sciences Technical Report 80
    Collections
    Optical Sciences Technical Reports

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.