Show simple item record

dc.contributor.advisorMcGrath, Dominic V.en
dc.contributor.authorCollazo-Ramos, Aura L.
dc.creatorCollazo-Ramos, Aura L.en
dc.date.accessioned2016-12-16T17:13:54Z
dc.date.available2016-12-16T17:13:54Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/10150/621741
dc.description.abstractOrganic photovoltaics (OPVs) are used to convert sunlight into electricity by using thin films of organic semiconductors. OPVs have the potential to produce low cost, lightweight, flexible devices with an eased manufacturing process. This technology contains the potential to increase the use of clean, sustainable solar energy, helping manage the global energy and environmental crisis that results majorly from the constant use of fossil fuels as an energy source. The ability to modulate the physical properties of organic molecules by tuning their chemical structure is an advantage for OPVs. Phthalocyanines (Pcs) are highly π-conjugated synthetic porphyrin analogs that have been explored as active layer components in OPVs due to their high extinction coefficients and hole mobilities. The Pc structure can be modified by the introduction of metals in the core and the incorporation of substituents into the periphery. These modifications tend to tune the solubility, photophysical properties and condensed phase organization of Pcs. The research work in this dissertation describes improved methods towards substituted Pc derivatives addressing: (1) the use of mass spectrometry techniques for Pcs characterization, (2) efforts to achieve materials with near-infrared (NIR) absorption, and (3) the potential of Pc as electron-acceptor materials. Herein, the synthesis of a series of asymmetric and symmetric metallated Pcs has been established, which resulted in interesting chemical, photophysical and electrochemical properties. The materials investigated in this thesis increase the potential of Pcs as organic semiconductors for OPVs.
dc.language.isoen_USen
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.subjectChemistryen
dc.titleSynthesis of Phthalocyanine Derivatives as Materials for Organic Photovoltaic Cellsen_US
dc.typetexten
dc.typeElectronic Dissertationen
thesis.degree.grantorUniversity of Arizonaen
thesis.degree.leveldoctoralen
dc.contributor.committeememberMcGrath, Dominic V.en
dc.contributor.committeememberMiranda, Katrinaen
dc.contributor.committeememberPolt, Robinen
dc.contributor.committeememberChristie, Hamishen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineChemistryen
thesis.degree.namePh.D.en
refterms.dateFOA2018-06-29T22:10:02Z
html.description.abstractOrganic photovoltaics (OPVs) are used to convert sunlight into electricity by using thin films of organic semiconductors. OPVs have the potential to produce low cost, lightweight, flexible devices with an eased manufacturing process. This technology contains the potential to increase the use of clean, sustainable solar energy, helping manage the global energy and environmental crisis that results majorly from the constant use of fossil fuels as an energy source. The ability to modulate the physical properties of organic molecules by tuning their chemical structure is an advantage for OPVs. Phthalocyanines (Pcs) are highly π-conjugated synthetic porphyrin analogs that have been explored as active layer components in OPVs due to their high extinction coefficients and hole mobilities. The Pc structure can be modified by the introduction of metals in the core and the incorporation of substituents into the periphery. These modifications tend to tune the solubility, photophysical properties and condensed phase organization of Pcs. The research work in this dissertation describes improved methods towards substituted Pc derivatives addressing: (1) the use of mass spectrometry techniques for Pcs characterization, (2) efforts to achieve materials with near-infrared (NIR) absorption, and (3) the potential of Pc as electron-acceptor materials. Herein, the synthesis of a series of asymmetric and symmetric metallated Pcs has been established, which resulted in interesting chemical, photophysical and electrochemical properties. The materials investigated in this thesis increase the potential of Pcs as organic semiconductors for OPVs.


Files in this item

Thumbnail
Name:
azu_etd_14904_sip1_m.pdf
Size:
39.30Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record