Show simple item record

dc.contributor.advisorCronin, Alexander D.en
dc.contributor.authorGregoire, Maxwell David
dc.creatorGregoire, Maxwell Daviden
dc.date.accessioned2016-12-16T22:41:47Z
dc.date.available2016-12-16T22:41:47Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/10150/621756
dc.description.abstractI used a Mach-Zehnder atom interferometer to measure the static electric-dipole polarizabilities of K, Rb, and Cs atoms with 0.11\% uncertainty. Static polarizability measurements serve as benchmark tests for 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 atomic structure calculations. Calculating atomic properties such as polarizabilities, van der Waals coefficients, state lifetimes, or oscillator strengths involves accurately calculating the valence electrons' electric-dipole transition matrix elements. Additionally, testing Cs atomic structure calculations helps interpret the results of parity non-conservation experiments, which in turn places constraints on beyond-the-standard-model physics. I discuss improvements to our experiment that allowed us to measure static polarizabilities with 0.11% uncertainty, and we present our results in the context of recent 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 and semi-empirical static polarizabilities and recent, high-precision measurements of excited state lifetimes and van der Waals C₆ coefficients. I also used our interferometer to develop a new technique for inertial sensing. High precision, portable, atom-interferometer gyroscopes and accelerometers are desirable for self-contained inertial navigation and in the future may be used for tests of General Relativity and searches for gravitational waves using satellite-mounted inertial sensors. Satellite-mounted atom interferometers are challenging to build because of size, weight, power, and reliability constraints. Atom interferometers that use nanogratings to diffract atoms are attractive for satellite-mounted inertial sensing applications because nanogratings weigh approximately nothing and require no power. We developed a new 𝑖𝑛 𝑠𝑖𝑡𝑢 measurement technique using our nanograting atom interferometer, and we used it to measure inertial forces for the benefit of our static polarizability measurements. I also review how to calculate the sensitivity of a nanograting atom interferometer, and I employed these calculations in order to design a portable, nanograting atom interferometer inertial sensor.
dc.language.isoen_USen
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.subjectGyroscopeen
dc.subjectInertialen
dc.subjectInterferometeren
dc.subjectPolarizabilityen
dc.subjectPrecisionen
dc.subjectPhysicsen
dc.subjectAtomen
dc.titleStatic Polarizability Measurements and Inertial Sensing with Nanograting Atom Interferometryen_US
dc.typetexten
dc.typeElectronic Dissertationen
thesis.degree.grantorUniversity of Arizonaen
thesis.degree.leveldoctoralen
dc.contributor.committeememberCronin, Alexander D.en
dc.contributor.committeememberSandhu, Arvinderen
dc.contributor.committeememberMelia, Fulvioen
dc.contributor.committeememberAnderson, Brian P.en
dc.contributor.committeememberJones, R. Jasonen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplinePhysicsen
thesis.degree.namePh.D.en
refterms.dateFOA2018-09-11T16:27:36Z
html.description.abstractI used a Mach-Zehnder atom interferometer to measure the static electric-dipole polarizabilities of K, Rb, and Cs atoms with 0.11\% uncertainty. Static polarizability measurements serve as benchmark tests for 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 atomic structure calculations. Calculating atomic properties such as polarizabilities, van der Waals coefficients, state lifetimes, or oscillator strengths involves accurately calculating the valence electrons' electric-dipole transition matrix elements. Additionally, testing Cs atomic structure calculations helps interpret the results of parity non-conservation experiments, which in turn places constraints on beyond-the-standard-model physics. I discuss improvements to our experiment that allowed us to measure static polarizabilities with 0.11% uncertainty, and we present our results in the context of recent 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 and semi-empirical static polarizabilities and recent, high-precision measurements of excited state lifetimes and van der Waals C₆ coefficients. I also used our interferometer to develop a new technique for inertial sensing. High precision, portable, atom-interferometer gyroscopes and accelerometers are desirable for self-contained inertial navigation and in the future may be used for tests of General Relativity and searches for gravitational waves using satellite-mounted inertial sensors. Satellite-mounted atom interferometers are challenging to build because of size, weight, power, and reliability constraints. Atom interferometers that use nanogratings to diffract atoms are attractive for satellite-mounted inertial sensing applications because nanogratings weigh approximately nothing and require no power. We developed a new 𝑖𝑛 𝑠𝑖𝑡𝑢 measurement technique using our nanograting atom interferometer, and we used it to measure inertial forces for the benefit of our static polarizability measurements. I also review how to calculate the sensitivity of a nanograting atom interferometer, and I employed these calculations in order to design a portable, nanograting atom interferometer inertial sensor.


Files in this item

Thumbnail
Name:
azu_etd_15015_sip1_m.pdf
Size:
13.08Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record