• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Functional Restoration of Irradiated Salivary Glands Through Modulation of aPKCζ and Nuclear Yap in Salivary Progenitors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15028_sip1_m.pdf
    Size:
    5.007Mb
    Format:
    PDF
    Download
    Author
    Martinez Chibly, Agustin Alejandro
    Issue Date
    2016
    Keywords
    IGF-1
    Radiation
    Salivary Glands
    Yap
    Cancer Biology
    aPKCζ
    Advisor
    Limesand, Kirsten H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Radiotherapy is the primary treatment for patients with head and neck cancer, which account for roughly 60,000 annual diagnoses in the U.S. and approximately 500,000 worldwide. About 90% of these individuals receive radiation therapy, and salivary hypofunction and xerostomia occur in 60-85% of these patients due to irreversible damage to the salivary glands. Current preventative and palliative care fail to improve quality of life, accentuating the need for regenerative therapies. Stem/progenitor-cell based therapies have been proposed to regenerate the irradiated glands; however, the identity of stem and progenitor cells in the adult salivary glands has remained somewhat elusive. Moreover, it is unclear how salivary progenitors respond to radiation and whether they can be stimulated to effectively reinstate salivary function. The second chapter of the present study describes the development of a label-retaining assay in salivary glands using EdU. The label-retaining cells (LRCs) identified in murine salivary glands have proliferative potential in vitro and expressed markers of putative salivary progenitors, such as Keratin 5, Keratin 14, and c-Kit. Interestingly, LRCs were still present 30 days following radiation, when chronic loss of saliva is evident. The significance of these findings lies in the potential of this model to study the mechanisms that prevent salivary progenitors from maintaining salivary gland homeostasis upon exposure to radiation, which will in turn facilitate the development of regenerative therapies for salivary gland dysfunction. In the following chapter, we show that a unique population of murine salivary gland LRCs undergo compensatory proliferation in response to radiation. The initiation of compensatory proliferation is tightly associated with inactivation of the kinase aPKCζ and increased nuclear localization of YAP. This part of the study provides novel insights into the regulation of function of salivary gland progenitors, which can be utilized for the development of therapeutic agents to treat salivary hypofunction. Finally, the last chapter describes how the mechanisms found to initiate compensatory proliferation in acinar LRCs as a response to radiation are involved in the regeneration of salivary glands with IGF-1. Administration of IGF-1 post-radiation restores salivary function in mice, but the mechanisms of regeneration are still unknown. Here, we show that IGF-1 requires aPKCζ to restore saliva production. Further, IGF-1 inhibits nuclear translocation of Yap in an aPKCζ-dependent fashion. We propose that a tightly regulated balance in the levels of aPKCζ and Yap in acinar LRCs has to be maintained in order to restore function following radiation. In conclusion, the findings from this study provide new knowledge in regards to the regulation of function of salivary progenitors during a state of injury (by radiation) and during regeneration (with IGF), and offer potential targets of study for the development of new therapeutics for salivary gland dysfunction. Future studies will determine whether aPKCζ and Yap can be effectively targeted in salivary progenitors to restore salivary function in head and neck cancer patients who receive radiation therapy.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Cancer Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.