• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Targeting Enzymes Involved in Protein Translation and Quality Control as Potential Cancer Therapeutics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15037_sip1_m.pdf
    Size:
    3.658Mb
    Format:
    PDF
    Download
    Author
    Tillotson, Joseph
    Issue Date
    2016
    Keywords
    Pharmacology & Toxicology
    Advisor
    Chapman, Eli
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Activation of pathways resulting in an overexpression of oncoproteins, reliant on cap-dependent translation, or mutations of key proteins in a pathway can be advantageous to cancer cells but creates heightened protein quality control pressure. Because of this, there has been an interest in targeting enzymes involved in protein synthesis and protein quality control: such as the eukaryotic initiation factor, eIF4A, a DEAD-box RNA helicase involved in translation initiation, and p97, an AAA+ chaperone involved in protein quality control. Despite some successes in discovering both eIF4A and p97 inhibitors, many of these compounds have pharmacological setbacks. The work in this dissertation defines new inhibitors of eIF4A and p97 with unique mechanisms of action. As described in chapter 2, we demonstrated that a marine-derived sesquiterpene, elatol, can modulate the ATPase activity of eIF4A. We provide further evidence that this molecule inhibits cap-dependent translation. Because there is no clear consensus on the mechanism of action for elatol, we hypothesized that the mechanism of toxicity attributed to elatol is likely through inhibition of cap-dependent translation initiation by targeting eIF4A. In chapter 3, we adapted a colorimetric assay to identify natural products that modulate the ATPase activity of p97 from which withaferin A (WFA) was identified. Because proteostasis modulation can connect each of the reported modes of action of WFA, we hypothesized that the primary mode of cytotoxic action of WFA is through inhibition of protein quality control machinery. Through medicinal chemistry efforts, we were able to improve WFA's biochemical and cellular activities as well as shifting the activity toward p97 and away from the proteasome. The work described in chapter 4 reports that dehydrocurvularin (DHC) and its chlorinated analogs are covalent modifiers of p97 and that the selectivity toward p97 can be attributed, in part, to the electronic effects of the chlorines. Taken together, this work highlights the significance of targeting protein translation and quality control, by modulation of eIF4A and p97 activity respectively, as promising anticancer therapeutics.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmacology & Toxicology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.