• Gender-Related Climate Response Of Radial Growth In Dioecious Fraxinus Mandshurica Trees

      Gao, Lushuang; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus; Key Laboratory for Silviculture and Conservation, The Ministry of Education, Beijing Forestry University (Tree-Ring Society, 2010-07)
      This paper presents an analysis of tree-ring growth patterns of male and female Fraxinus mandshurica trees from 1931 to 2007. The specific object was to study the response of radial growth to climate variables separately for male and female trees. The results show that the growth patterns in the two genders were similar during the mid-1950s to 1970s but different in the periods 1931–1940s and 1980–2007. In the period 1980–2007, the mean sensitivity and mean widths of the tree rings were significantly different between the genders (p < 0.05). The climate-growth response in female and male trees was also different. Female trees are sensitive to precipitation in November of the previous year, whereas male trees respond to mean temperature in November of the previous year. The results confirm that climatic sensitivity in male and female trees of dioecious species is different, yet this difference is not stable through time.
    • The Historical Dendroarchaeology Of The Ximénez-Fatio House, St. Augustine, Florida, U.S.A.

      Grissino-Mayer, Henri D.; Kobziar, Leda N.; Harley, Grant L.; Russell, Kevin P.; LaForest, Liza B.; Oppermann, Joseph K.; Laboratory of Tree-Ring Science, Department of Geography, The University of Tennessee; School of Forest Resources & Conservation and School of Natural Resources and Environment, University of Florida; Joseph K. Oppermann—Architect (Tree-Ring Society, 2010-01)
      In recent decades, agencies charged with managing historic structures and sites have found dendroarchaeological studies increasingly valuable, given the ability of such studies to verify (or refute) accepted dates of construction. The Ximénez-Fatio House has well-documented historical and cultural significance for the state of Florida, as it is one of St. Augustine’s oldest, best-preserved, and most studied historic properties. According to documentary sources, the two-story coquina-stone main house was reportedly built around 1797–1798, and included a one-story wing of warehouses, giving the house a distinctive ‘‘L’’ shape. Documentary evidence also suggests that a second story was added above the wing sometime between 1830 and 1842. However, after studying the building fabric itself, historical architects now believe the entire wing of the house was remodeled two decades later in the 1850s. Our goals were to: (1) determine the probable construction years for the original house and wing using tree-ring dating techniques, and (2) verify the probable construction year for the remodeling that occurred in the wing section of the house. A total of 74 core samples were extracted from longleaf pine (Pinus palustris P. Miller) timbers used to construct the house. Twenty-six were confidently crossdated both visually and statistically against each other to produce a 185-year floating tree-ring chronology. A statistically significant (p < 0.0001) correlation between our chronology and a longleaf pine chronology from Lake Louise, Georgia, anchors our chronology between 1673 and 1857. No cutting dates were obtained from the main house, but the lack of any tree rings that post-date 1798 supports the 1797 construction date. Furthermore, cutting dates obtained from beams in the first-floor wing revealed that the extensive remodeling of the wing likely occurred in the period 1856 to 1858 soon after the house had been purchased by Louisa Fatio in 1855.
    • In Memoriam- Laurent Misson (1971–2010)

      Guiot, Joel (Tree-Ring Society, 2010-07)
    • In Memoriam- Marvin A. Stokes (1927–2010)

      Swetnam, Tom (Tree-Ring Society, 2010-07)
    • Lack Of Gender Bias In Citation Rates Of Publications By Dendrochronologists: What is Unique About This Discipline?

      Copenheaver, Carolyn A.; Goldbeck, Kyrille; Cherubini, Paolo; Department of Forest Resources and Environmental Conservation, Virginia Tech; University Libraries, Virginia Tech; Swiss Federal Institute for Forestry, Snow, and Landscape Research (WSL) (Tree-Ring Society, 2010-07)
      Most academic disciplines have a gender bias that exists in the recognition of research publications: women’s publications are cited at lower rates than men’s publications. In this paper, we examined whether a similar gender bias existed for publications by dendrochronologists. Tree-ring research is a fairly small field where males outnumber females, and therefore the sample size was limited to 20 female dendrochronologists and 20 male dendrochronologists. It was determined that native language (English or non-native English speaker), current employment (government or academic), and gender of the first-author do not significantly influence a paper’s probability of being cited. However, years since dissertation completion was a good predictor of a paper’s citation rate. We suggest that the high productivity of female dendrochronologists and a pattern of co-authoring with male colleagues bring the work of females to the attention of their male colleagues and thus eliminate the gender bias in citation of women’s work common to other disciplines.
    • The Meteorological Significance Of False Rings In Eastern Redcedar (Juniperus Virginiana L.) From The Southern Great Plains, U.S.A.

      Edmondson, Jesse R.; Tree-Ring Laboratory, University of Arkansas, Department of Geosciences (Tree-Ring Society, 2010-01)
      The growth rings of eastern redcedar (Juniperus virginiana L.) often contain a high frequency of false intra-annual growth bands, which complicates the dendrochronology of this species. However, exactly dated false rings replicated among many trees can reflect major weather changes during the growing season. Sixty-one trees from two sites (Oklahoma and Kansas) were dated and used to compile replicated chronologies of false rings at both locations extending from AD 1700–2000. False-ring events during the modern instrumental era were compared with the daily weather data from nearby stations. Significant false-ring events occurred at both locations during years that experienced a dramatic late-growing season weather reversal, when an extended period of high temperatures and drought was followed by prolonged cool and wet conditions. Synoptic weather maps for these events indicate that all ten replicated false-ring events in the instrumental era occurred during the highly unseasonable penetration of a cold front into the region. However, none of the significant false-ring events occurred in the same year at both sites. These separate false-ring chronologies indicate that there may be phenological differences in the timing of radial growth in redcedar between Kansas and Oklahoma, and that the weather conditions responsible for false-ring formation often occur at the mesoscale and do not often impact central Kansas and northcentral Oklahoma simultaneously.
    • Removing Biological Trends From Tree-Ring Series: Testing Modified Hugershoff Curves

      Fang, Keyan; Gou, Xiaohua; Peters, Kenneth; Li, Jinbao; Zhang, Fen; MOE Key Laboratory of Western China’s Environmental Systems, Lanzhou University; Tree-Ring Lab, Lamont-Doherty Earth Observatory of Columbia University (Tree-Ring Society, 2010-01)
      The performance of the Hugershoff curve on fitting the growth trends of tree-ring series was tested using ring-width series with different starting years. The fitted values tend to be biased by tree-ring series close to pith, a phenomenon that was referred to as the ‘‘start-fitting problem’’. We determined three parameters with specific biological age-related meanings for the Hugershoff growth curve, i.e. the maximum growth, the maximum slope and the maximum changing ratio of slopes. A set of modified Hugershoff curves with different starting years was proposed to mitigate the start-fitting problem. Behavior of the modified Hugershoff curves on tree-ring series standardizations was tested and discussed. The ‘‘end-fitting problem’’ suggests that deviations in one interval could bias the fitted values of other time periods by using the Hugershoff curve.
    • Stable-Carbon Isotope Time Series From Tropical Tree Rings Indicate A Precipitation Signal

      Fichtler, Esther; Helle, Gerhard; Worbes, Martin; Georg August Universität Göttingen, Department of Crop Sciences, Agronomy in the Tropics; Institute of Chemistry and Dynamics of the Geosphere, Research Centre Jülich (Tree-Ring Society, 2010-01)
      Although studies on stable-carbon isotopes in trees from temperate zones provide abundant paleoclimatic data, tropical trees are still understudied in this context. Therefore this study examined the variability of intra- and inter-annual stable-carbon isotopic pattern in several tree species from various tropical climates. The 𝛿¹³C values of samples of 12 broadleaved trees (seven species) from various paleotropical and neotropical sites along a climatic moisture gradient were investigated. The inter-annual variability between species and sites was studied. Further the relationship between 𝛿¹³C and precipitation time series was analyzed. Results show that tropical tree species show a similar variability in carbon isotopic composition as temperate tree species. Significant correlations between annual precipitation and tree-ring 𝛿¹³C time series were negative. Successful crossdating of a tree-ring 𝛿¹³C time series highlights the potential of carbon isotope measurements for tropical tree-ring analytical studies. Tropical broadleaved trees are able to capture a carbon isotopic signal in their annual rings even under everwet conditions and show good potential for paleoclimatic research.
    • Technique To Improve Visualization Of Elusive Tree-Ring Boundaries In Aspen (Populus tremuloides)

      DeRose, R. Justin; Gardner, Richard S.; Department of Wildland Resources and Ecology Center, Utah State University; Department of Wildland Resources, Utah State University (Tree-Ring Society, 2010-01)
      A simple, quick, and inexpensive technique to improve visualization of aspen (Populus tremuloides) tree rings under the microscope, the ‘shadow technique’, is described. The technique assumes appropriate preparation of increment cores or cross-sections and works well on the lighter portions of the sample with fungus- and bacteria-free wood. The shadow technique was used successfully to elucidate tree-ring boundaries in small diameter (<5 cm DBH) aspen from northern Utah that commonly had >100 annual rings. Crossdating verified whether the elusive rings were missing or false rings. Aspen tree-ring measurement will be greatly enhanced with the shadow technique and preliminary investigation suggests it could be used on other species such as curlleaf mountain mahogany (Cercocarpus ledifolius).