Name:
Venka_stochastic_longshore.pdf
Size:
5.866Mb
Format:
PDF
Description:
Final Accepted Manuscript
Affiliation
University of Arizona, Department of Mathematics and Program in Applied MathematicsIssue Date
2016-12Keywords
Longshore currentsStochastic parametrization
Parameter sensitivity
Consistently of model sensitivity
Data assimilation
Metadata
Show full item recordPublisher
ELSEVIER SCI LTDCitation
Stochastic longshore current dynamics 2016, 98:186 Advances in Water ResourcesJournal
Advances in Water ResourcesRights
© 2016 Elsevier Ltd. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We develop a stochastic parametrization, based on a 'simple' deterministic model for the dynamics of steady longshore currents, that produces ensembles that are statistically consistent with field observations of these currents. Unlike deterministic models, stochastic parameterization incorporates randomness and hence can only match the observations in a statistical sense. Unlike statistical emulators, in which the model is tuned to the statistical structure of the observation, stochastic parametrization are not directly tuned to match the statistics of the observations. Rather, stochastic parameterization combines deterministic, i.e physics based models with stochastic models for the "missing physics" to create hybrid models, that are stochastic, but yet can be used for making predictions, especially in the context of data assimilation. We introduce a novel measure of the utility of stochastic models of complex processes, that we call consistency of sensitivity. A model with poor consistency of sensitivity requires a great deal of tuning of parameters and has a very narrow range of realistic parameters leading to outcomes consistent with a reasonable spectrum of physical outcomes. We apply this metric to our stochastic parametrization and show that, the loss of certainty inherent in model due to its stochastic nature is offset by the model's resulting consistency of sensitivity. In particular, the stochastic model still retains the forward sensitivity of the deterministic model and hence respects important structural/physical constraints, yet has a broader range of parameters capable of producing outcomes consistent with the field data used in evaluating the model. This leads to an expanded range of model applicability. We show, in the context of data assimilation, the stochastic parametrization of longshore currents achieves good results in capturing the statistics of observation that were not used in tuning the model.Note
24 month embargo. First available online 9 November 2016.ISSN
03091708Version
Final accepted manuscriptSponsors
GoMRI/BP; National Science Foundation [PHYS-1066293]; J. T. Oden Fellowship program at U. Texas, Austin; [NSF-DMS-1109856]Additional Links
http://linkinghub.elsevier.com/retrieve/pii/S0309170816306157ae974a485f413a2113503eed53cd6c53
10.1016/j.advwatres.2016.11.002