Multiresponse modeling of variably saturated flow and isotope tracer transport for a hillslope experiment at the Landscape Evolution Observatory
dc.contributor.author | Scudeler, Carlotta | |
dc.contributor.author | Pangle, Luke | |
dc.contributor.author | Pasetto, Damiano | |
dc.contributor.author | Niu, Guo-Yue | |
dc.contributor.author | Volkmann, Till | |
dc.contributor.author | Paniconi, Claudio | |
dc.contributor.author | Putti, Mario | |
dc.contributor.author | Troch, Peter | |
dc.date.accessioned | 2017-01-12T21:43:51Z | |
dc.date.available | 2017-01-12T21:43:51Z | |
dc.date.issued | 2016-10-07 | |
dc.identifier.citation | Multiresponse modeling of variably saturated flow and isotope tracer transport for a hillslope experiment at the Landscape Evolution Observatory 2016, 20 (10):4061 Hydrology and Earth System Sciences | en |
dc.identifier.issn | 1607-7938 | |
dc.identifier.doi | 10.5194/hess-20-4061-2016 | |
dc.identifier.uri | http://hdl.handle.net/10150/621948 | |
dc.description.abstract | This paper explores the challenges of model parameterization and process representation when simulating multiple hydrologic responses from a highly controlled unsaturated flow and transport experiment with a physically based model. The experiment, conducted at the Landscape Evolution Observatory (LEO), involved alternate injections of water and deuterium-enriched water into an initially very dry hillslope. The multivariate observations included point measures of water content and tracer concentration in the soil, total storage within the hillslope, and integrated fluxes of water and tracer through the seepage face. The simulations were performed with a three-dimensional finite element model that solves the Richards and advection–dispersion equations. Integrated flow, integrated transport, distributed flow, and distributed transport responses were successively analyzed, with parameterization choices at each step supported by standard model performance metrics. In the first steps of our analysis, where seepage face flow, water storage, and average concentration at the seepage face were the target responses, an adequate match between measured and simulated variables was obtained using a simple parameterization consistent with that from a prior flow-only experiment at LEO. When passing to the distributed responses, it was necessary to introduce complexity to additional soil hydraulic parameters to obtain an adequate match for the point-scale flow response. This also improved the match against point measures of tracer concentration, although model performance here was considerably poorer. This suggests that still greater complexity is needed in the model parameterization, or that there may be gaps in process representation for simulating solute transport phenomena in very dry soils. | |
dc.description.sponsorship | National Science Foundation (NSF) [EAR-1344552, EAR-1417097] | en |
dc.language.iso | en | en |
dc.publisher | COPERNICUS GESELLSCHAFT MBH | en |
dc.relation.url | http://www.hydrol-earth-syst-sci.net/20/4061/2016/ | en |
dc.rights | © Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License. | en |
dc.title | Multiresponse modeling of variably saturated flow and isotope tracer transport for a hillslope experiment at the Landscape Evolution Observatory | en |
dc.type | Article | en |
dc.contributor.department | Univ Arizona, Biosphere Earth Sci 2 | en |
dc.contributor.department | Univ Arizona, Dept Hydrol & Water Resources | en |
dc.identifier.journal | Hydrology and Earth System Sciences | en |
dc.description.collectioninformation | This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu. | en |
dc.eprint.version | Final published version | en |
refterms.dateFOA | 2018-07-01T10:56:09Z | |
html.description.abstract | This paper explores the challenges of model parameterization and process representation when simulating multiple hydrologic responses from a highly controlled unsaturated flow and transport experiment with a physically based model. The experiment, conducted at the Landscape Evolution Observatory (LEO), involved alternate injections of water and deuterium-enriched water into an initially very dry hillslope. The multivariate observations included point measures of water content and tracer concentration in the soil, total storage within the hillslope, and integrated fluxes of water and tracer through the seepage face. The simulations were performed with a three-dimensional finite element model that solves the Richards and advection–dispersion equations. Integrated flow, integrated transport, distributed flow, and distributed transport responses were successively analyzed, with parameterization choices at each step supported by standard model performance metrics. In the first steps of our analysis, where seepage face flow, water storage, and average concentration at the seepage face were the target responses, an adequate match between measured and simulated variables was obtained using a simple parameterization consistent with that from a prior flow-only experiment at LEO. When passing to the distributed responses, it was necessary to introduce complexity to additional soil hydraulic parameters to obtain an adequate match for the point-scale flow response. This also improved the match against point measures of tracer concentration, although model performance here was considerably poorer. This suggests that still greater complexity is needed in the model parameterization, or that there may be gaps in process representation for simulating solute transport phenomena in very dry soils.</p> |