First on-sky closed loop measurement and correction of atmospheric dispersion
Author
Pathak, PrashantGuyon, Olivier
Jovanovic, Nemanja
Lozi, Julien
Martinache, F.
Minowa, Y.
Kudo, T.
Takami, H.
Hayano, Y.
Narita, N.
Affiliation
Univ Arizona, Steward ObservUniv Arizona, Coll Opt Sci
Issue Date
2016-07-27
Metadata
Show full item recordPublisher
SPIE-INT SOC OPTICAL ENGINEERINGCitation
Prashant Pathak ; Olivier Guyon ; Nemanja Jovanovic ; Julien Lozi ; F. Martinache ; Y. Minowa ; T. Kudo ; H. Takami ; Y. Hayano and N. Narita " First on-sky closed loop measurement and correction of atmospheric dispersion ", Proc. SPIE 9909, Adaptive Optics Systems V, 990956 (July 27, 2016); doi:10.1117/12.2234094; http://dx.doi.org/10.1117/12.2234094Journal
ADAPTIVE OPTICS SYSTEMS VRights
© 2016 SPIE.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
In the field of exoplanetary sciences, high contrast imaging is crucial for the direct detection of, and answering questions about habitability of exoplanets. For the direct imaging of habitable exoplanets, it is important to employ low inner working angle (IWA) coronagraphs, which can image exoplanets close to the PSF. To achieve the full performance of such coronagraphs, it is crucial to correct for atmospheric dispersion to the highest degree, as any leakage will limit the contrast. To achieve the highest contrast with the state-of-the-art coronagraphs in the SCExAO instrument, the spread in the point-spread function due to residual atmospheric dispersion should not be more than 1 mas in the science band. In a traditional approach, atmospheric dispersion is compensated by an atmospheric dispersion compensator (ADC), which is simply based on model which only takes into account the elevation of telescope and hence results in imperfect correction of dispersion. In this paper we present the first on-sky closed-loop measurement and correction of residual atmospheric dispersion. Exploiting the elongated nature of chromatic speckles, we can precisely measure the presence of atmospheric dispersion and by driving the ADC, we can do real-time correction. With the above approach, in broadband operation (y-H band) we achieved a residual of 4.2 mas from an initial 18.8 mas and as low as 1.4 mas in H-band only after correction, which is close to our science requirement. This work will be valuable in the field of high contrast imaging of habitable exoplanets in the era of the ELTs.ISSN
0277-786XVersion
Final published versionae974a485f413a2113503eed53cd6c53
10.1117/12.2234094