• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    FROM NEUTRON STAR OBSERVABLES TO THE EQUATION OF STATE. I. AN OPTIMAL PARAMETRIZATION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Raithel_2016_ApJ_831_44.pdf
    Size:
    2.757Mb
    Format:
    PDF
    Description:
    FInal Published Version
    Download
    Author
    Raithel, Carolyn A.
    Özel, Feryal
    Psaltis, Dimitrios cc
    Affiliation
    Univ Arizona, Dept Astron
    Univ Arizona, Steward Observ
    Issue Date
    2016-10-26
    Keywords
    equation of state
    stars: interiors
    stars: neutron
    
    Metadata
    Show full item record
    Publisher
    IOP PUBLISHING LTD
    Citation
    FROM NEUTRON STAR OBSERVABLES TO THE EQUATION OF STATE. I. AN OPTIMAL PARAMETRIZATION 2016, 831 (1):44 The Astrophysical Journal
    Journal
    The Astrophysical Journal
    Rights
    © 2016. The American Astronomical Society. All rights reserved.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    The increasing number and precision of measurements of neutron star masses, radii, and, in the near future, moments of inertia offer the possibility of precisely determining the neutron star equation of state (EOS). One way to facilitate the mapping of observables to the EOS is through a parametrization of the latter. We present here a generic method for optimizing the parametrization of any physically allowed EOS. We use mock EOS that incorporate physically diverse and extreme behavior to test how well our parametrization reproduces the global properties of the stars, by minimizing the errors in the observables of mass, radius, and the moment of inertia. We find that using piecewise polytropes and sampling the EOS with five fiducial densities between similar to 1-8 times the nuclear saturation density results in optimal errors for the smallest number of parameters. Specifically, it recreates the radii of the assumed EOS to within less than 0.5 km for the extreme mock EOS and to within less than 0.12 km for 95% of a sample of 42 proposed, physically motivated EOS. Such a parametrization is also able to reproduce the maximum mass to within 0.04 M-circle dot and the moment of inertia of a 1.338 M-circle dot. neutron star to within less than 10% for 95% of the proposed sample of EOS.
    ISSN
    1538-4357
    DOI
    10.3847/0004-637X/831/1/44
    Version
    Final published version
    Sponsors
    NASA [NNX16AC56G]
    Additional Links
    http://stacks.iop.org/0004-637X/831/i=1/a=44?key=crossref.766f7d790f09e4c490ed9e8856cd1735
    ae974a485f413a2113503eed53cd6c53
    10.3847/0004-637X/831/1/44
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.