Kosbar, Kurt; Maruska, John; Schad, Judah; Missouri University of Science and Technology, Department of Electrical and Computer Engineering (International Foundation for Telemetering, 2016-11)
      This paper discusses a modular open source electronic soil analysis system embedded in a remote vehicle designed for use on a colonizationeffort Mars rover. The embedded system consists of a soil extraction drill sheath, a temperature and moisture array sensor sheath, a sample return bay specialized for RamanFluorescence spectrometry, and an Ethernet bridge radio for communication, all controlled through several microcontroller boards. A Windowsbased graphical engagement application provides real time control. A Linuxbased scripting application provides postprocessing, graphing, and statistical analysis. All software and electrical hardware has been made opensource for the public to build upon.
    • Minimum Euclidean Distance Algorithm for Indoor WiFi Received Signal Strength (RSS) Fingerprinting

      Moazzami, Farzad; Dean, Richard A.; Astatke, Yacob; Zegeye, Wondimu K.; Amsalu, Seifemichael B.; Morgan State University, Department of Electrical and Computer Engineering (International Foundation for Telemetering, 2016-11)
      While WiFi-based indoor localization is attractive, the need for a significant degree of pre-deployment effort is a key challenge. In this paper, indoor localization with no pre-deployment effort in an indoor space, such as an office building corridor, with WiFi coverage but no apriori knowledge of the placement of the access points(APs) is implemented for mobile devices. WiFi Received Signal Strength(RSS) in the considered environment is used to build radio maps using WiFi fingerprinting approach. Two architectures are developed based on this localization algorithm. The first one involves a client-server approach where the localization algorithm runs on the server whereas the second one is a standalone architecture and the algorithm runs on the SD card of the mobile device.

      Saha, Dola; Doddapaneni, Purna; Wofford, Quincy; Maneth, Nicole; University of Kansas, Information and Telecommunication Technology Center (International Foundation for Telemetering, 2016-11)
      What could we learn from monitoring our body processes with various portable sensors and an unconstrained analysis platform? Physiological processes in the human body produce observable biosignals. These signals contain a wealth of information about the condition of the body, and its reaction to environmental factors. Our study harnesses 9 unique sensors, integrated by the eHealthSensor platform for Arduino, to transmit data to an Android device. The Android device contains a local PostgreSQL database, which synchronizes with the cloud. Using this platform, researchers can monitor a subjects biosignals as they ride a roller coaster or participate in exercise activities. Nurses can monitor the vitals of multiple patients remotely. Analytic, cloud based services, managed by healthcare providers, could ultimately enable automated diagnosis of medical conditions.

      Eckman, Bill; Irvin, Dana; Lokshin, Kirill; Puri, Amit; Ingenicomm Inc. (International Foundation for Telemetering, 2016-11)
      The conventional architecture of modern telemetry and signal processing systems typically relies on some combination of specialized hardware and firmware components integrated with commercial rackmount computer platforms running off-the-shelf operating systems. The evolution of the modern system-on-a-chip (SoC) architecture, which tightly couples traditional field-programmable gate array (FPGA) elements with high-performance embedded microprocessor cores, offers an alternative to this conventional approach. When effectively utilized, the SoC approach can provide several advantages, including reduced system size and power, increased system security, and lower lifetime operating costs. This paper discusses the benefits offered by embedded SoC architectures for the implementation of satellite telemetry processing systems, and presents an example design that demonstrates advantages with respect to security, reliability, maintainability, footprint, and cost.
    • Noise Predictive Information Rate Estimation for TDMR Channels

      Bahrami, Mohsen; Vasic, Bane; Univ Arizona, Dept Elect & Comp Engn (International Foundation for Telemetering, 2016-11)
      In this paper, we use the forward recursion BCJR algorithm to estimate the symmetric information rate for Two Dimensional Magnetic Recording (TDMR) channels. In particular, we consider a TDMR read/write channel whose all components, including recording medium, write and readback processes are modeled in software. Since the primary source of noise in TDMR arises from irregularities in the recording medium and leads to highly colored and data-dependent jitter, the pattern dependent noise predictive (PDNP) algorithm is implemented to improve the accuracy and performance of SIR estimation. Furthermore, we study the performance gain of using the PDNP algorithm in SIR estimation through simulations over the Voronoi based media model for different TDMR channel configurations.

      Wang, Enkuang D.; Brothers, Timothy J.; Georgia Tech Research Institute (International Foundation for Telemetering, 2016-11)
      This paper presents a hardware implementation of a transceiver capable of both orthogonal frequency-division multiplexing (OFDM) and shaped-offset quadrature phase shift keying (SOQPSK) transmissions using a dataflow programming language. Based on the physical layer iNET standard, we introduce a transceiver implementation that utilizes both waveforms with low density parity check (LDPC) forward error correction (FEC) codes. This testbed is intended to test and enable an adaptive algorithm that uses both waveforms as its modulation schemes. As such, it has the ability to dynamically select various modulation parameters and coding rates. The hardware implementations are described and performance utilizations are presented.

      Rice, Michael; Ravert, Jeffrey; Brigham Young University (International Foundation for Telemetering, 2016-11)
      This paper describes the use of a phase lock loop (PLL) to compensate for and remove a residual frequency offset when using data-aided estimators to equalize SOQPSK-TG. The problems of multipath and residual frequency offset will be shown my example. An equalizer followed by a PLL will be shown to be a viable option to mitigate multipath and residual frequency offset by example.

      Kilpatrick, Stephen; Westhart, Philip M; Abbott, Ben A.; Southwest Research Institute (International Foundation for Telemetering, 2016-11)
      The growth of network-based systems in flight test will present performance problems within the community. Legacy instrumentation systems are not capable of meeting the high-bandwidth, low latency data processing requirements of these next generation data acquisition systems. Ongoing research at Southwest Research Institute is exploring the use of a variety of commodity components, such as Graphics Processing Units (GPUs) and multicore Central Processing Units (CPUs), in ways that can be applied to both the small embedded components as well as the larger ground systems. This paper will explore an open, scalable Commercial-Off-The-Shelf (COTS) approach to bridge the gap and minimize changes to the legacy systems. Current results from this approach will be presented at the conference.

      Borah, Deva K.; Christopher, Ryan M.; New Mexico State University, Department of Electrical and Computer Engineering (International Foundation for Telemetering, 2016-11)
      This paper investigates a directional modulation (DM) method that distorts the received symbol constellations along a set of undesired directions while maintaining an undistorted constellation in the direction of intended communications. The problem is formulated in terms of minimization of the symbol distance metrics along the undesired directions. An algorithm assigns a symbol pair to each undesired direction for symbol distance minimization. Constraints for good reception in the desired direction are also included. The method involves iterations between a quadratic minimization problem and an unbalanced transportation problem. Numerical results are presented to show the bit error rate (BER) benefits of the proposed method.

      Borah, Deva K.; Curry, Elam; New Mexico State University (International Foundation for Telemetering, 2016-11)
      Visible light communication (VLC) is emerging as a complementary technology to radio frequency communication. Some of the benefits of VLC include reusable bandwidth, security and high potential data rates. VLC can also be used in user positioning. For both communication and positioning systems, knowledge of the VLC channel parameters is usually needed. This paper investigates the estimation of the light-emitting diode (LED) parameters and user positions. The performance of the proposed estimation technique is numerically studied. Cram´er Rao lower bound (CRLB) results are derived and compared with the results obtained from the proposed maximum likelihood estimator. The effect of channel estimation on overall communication performance in terms of symbol error rate (SER) is also studied. The SER results using the estimated channel closely match with known channel results.

      Ito, Sei; Honda, Takeshi; Tanaka, Toshihisa; Aoyama, Daiki; Kawasaki Heavy Industries, Ltd. (International Foundation for Telemetering, 2016-11)
      Through the use of early iNET-prototype IP Transceiver technology, Kawasaki Heavy Industries, Ltd. (KHI) has been able to communicate with a flight test vehicle. This technology provides a two-way high-capacity communication that has not been achieved with conventional telemetry. KHI has been authorized to use S-band IP Transceivers since 2014 in Japan. Then various communication tests have been performed. Last year we presented the result of the performance test of initial iNET-like RF network using a tethered aerostat at ITC. As the next phase, we have a plan of the test using a helicopter. The test is going to be conducted in September. We will present the results at ITC. This paper describes plans of the test which includes improved data backfill techniques.

      Grubbs, Elmer A.; Northern Arizona University (International Foundation for Telemetering, 2016-11)
      This paper describes a new way to look at telemetry data. We examine a way to use virtual reality to evaluate and view data from a large collection of stored signals. Each individual signal will have limits associated with it that allow us to determine whether any part of the signal exceeds those limits and if so what part(s) of the waveform contain these abnormalities. A program using virtual reality to illustrate the technique has been written and will be demonstrated as part of the conference presentation.
    • Protecting Telemetry Data from Compromise Learning from the Mistakes of the Breached!

      Kalibjian, Jeff; Hewlett Packard Enterprise (International Foundation for Telemetering, 2016-11)
      Information has value and as such any network based computer (whether that network touches the Internet or not) has the potential to be hacked. Telemetry data is not immune to the threat. While there are a myriad of security sensor and analytics tools available for entities to deploy in order to protect their IT networks and assets on those networks, sometimes overlooked is also the wealth of research data available regarding the etiology of breaches that reveal fascinating, sometimes counterintuitive insights in the best ways to configure and integrate security applications to protect the organization. After reviewing the latest research data regarding computer and IT network compromise, security strategies implied in the research data appropriate to the security challenges encountered in the telemetry post processing environment will be thoroughly examined providing tangible methodologies that may be employed to better protect organization telemetry post processing and IT infrastructures.

      Rubio, Pedro; Fernandez, Francisco; Jimenez, Francisco; Airbus D&S (International Foundation for Telemetering, 2016-11)
      The purpose of this paper is to show the integration of the transmission gain values of a telemetry transmission antenna according to its relative position and integrate them in the C band link budget, in order to obtain an accuracy vision of the link. Once our C band link budget was fully performed to model our link and ready to work in real time with several received values (GPS position, roll, pitch and yaw) from the aircraft and other values from the Ground System (azimuth and elevation of the reception telemetry antenna), it was necessary to avoid a constant value of the transmitter antenna and estimate its values with better accuracy depending of the relative beam angles between the transmitter antenna and receiver antenna. Keeping in mind an aircraft is not a static telecommunication system it was necessary to have a real time value of the transmission gain. In this paper, we will show how to perform a real time link budget (C band).

      Song, Jian; Zhu, Ximing; Beijing Zoweetech Ltd.; Zhongyuan Electronics Technology Institute (International Foundation for Telemetering, 2016-11)
      Ethernet is a common practice to reconstruct a networked telemetry system. However, Ethernet switch cannot best meet the requirement of data transportation in a telemetry system because of its asynchronous mode and the uncertainty of latency time. In addition, the temporal order of the telemetry data will be disrupted when using an Ethernet switch. A device similar to Ethernet switch is presented in this paper, which can transport data synchronously without losing the original temporal order of the telemetry data. Meantime, a special condition is arranged by the device that the timing signal could be transmit from the device to the receiver in a certain delay time, so a timing mechanism derived from IEEE 1588 PTP protocol could be adopted for high accuracy of timing and synchronous sampling control.

      Diehl, Michael; Swain, Jason; Wilcox, Tab; Air Combat Systems Directorate (International Foundation for Telemetering, 2016-11)
      The United States (U.S.) Army Yuma Proving Ground (YPG) conducted a series of rotary-wing flight tests for the sole purpose of checking out Telemetry data link instrumentation. Four flights were conducted at YPG in February 2016 that built upon an earlier test flight conducted in June 2015. The most recent iteration of testing examined the benefits of frequency diversity on aircraft and the spatial diversity of receiving sites using existing hardware at YPG. Quantitative analysis from those flight results will be presented and include discussion on how results will affect future mission operations at YPG.

      Granitzki, Richard F.; Sweeney, Patrick J.; Choi, Jin; Hoch, Daniel; Vega, Gilmer; US Army Armament Research Development and Engineering Center (International Foundation for Telemetering, 2016-11)
      The Telemetry Branch within the US Army’s Armament Research, Development and Engineering Center (ARDEC) has developed a miniature telemetry device that supports: live data, on-board recording (OBR), and delay repeat OBR telemetry functions in order to capture valuable interior ballistics sensor measurements of developmental munitions and weapons systems. This paper discusses the measurement capability of the STEEL (Selectable Telemetry Enhanced ELectronics) architecture and its typical integrated characteristics. The STEEL architecture has been demonstrated to reliably perform during live fire 155mm artillery and 120mm mortar testing environments. Results will be presented highlighting the electronics’ performance during these extreme environmental conditions.

      Noonan, Patrick J.; Ibaroudene, Hakima; Whittington, Austin J.; Moodie, Myron L.; Southwest Research Institute (International Foundation for Telemetering, 2016-11)
      Configuring flight test systems can be a complex process due to the large number of choices that must be made. Making these choices requires system knowledge to build a working configuration in an efficient and timely manner. Historically, flight test systems have embedded this system knowledge in code. The limitation with these approaches is that any change or addition to the system knowledge is costly due to the significant work required to update and maintain the software. We see the philosophy of constraints as a promising path toward addressing these issues. In the context of flight test configuration, a set of constraints defines the limits of how a system may be configured to perform specific tasks. This paper describes an approach for simplifying configuration by moving the system knowledge out of hardcoded business rules and into a flexible architecture that leverages constraints for validation of system configurations.
    • Software Defined Radio MIMO Telemetry Transmitter

      Kosbar, Kurt; Becker, Brandon; Bennett, Charles; Missouri University of Science and Technology, Department of Electrical and Computer Engineering (International Foundation for Telemetering, 2016-11)
      This paper describes the development of a small, low-cost, and flexible telemetry transmitter that can be used for multiple-input multiple-output (MIMO) communication systems. In the intended application, the transmitter will collect data from sensors on small quad copters or drones, regarding the vehicle’s attitude, location, movement, and other flight data. This will be combined into a single data stream, and base-band modulation applied by a field programmable gate array (FPGA). The FPGA output will control a separate RF modulation board, which will generate a pair of RF signals suitable for use in a 2x2 MIMO system. The original application uses the 902- 928MHz ISM band. The modulation format can be altered by changing the software for the FPGA.

      Rice, Michael; Hogstrom, Christopher; Nash, Christopher; Ravert, Jeffrey; Cole-Rhodes, Arlene; Moazzami, Farzad; Saquib, Mohammad; Afran, Md. Shah; Perrins, Erik; Temple, Kip; et al. (International Foundation for Telemetering, 2016-11)
      This paper describes the results of flight tests designed to compare data-aided equalization to blind, adaptive equalization using SOQPSK-TG in aeronautical telemetry. The flight tests were conducted on 3 June 2016 at the Air Force Flight Test Center, Edwards AFB, at upper L band (1801.5 MHz) and at C band (4711.5 MHz). Five data-aided equalizers were implemented and compared to a commercially available blind equalizer. In addition, all equalized bit streams were compared to an unequalized reference. The results show that the blind equalizer tends to be either really good or really bad. In contrast, the data-aided equalizers tend to exhibit more graceful degradation. Which equalization method is “best” is not clear as of this writing. The answer depends on a number factors that will become clear as more data from the experiments is analyzed.