Marcellin, Michael W.; Deputy, Xander; Fox, Kevin; Meyer, Christopher; Mitts, Cody; Wang, Jiaxiang; Univ Arizona, Dept Elect & Comp Engn (International Foundation for Telemetering, 2016-11)
      This paper describes an autonomous platform that can map an indoor single-floor environment in two spatial dimensions. The design uses the Simultaneous, Localization, and Mapping (SLAM) algorithm, which utilizes inertial measurement unit (IMU), microcontroller unit (MCU), and a 360-degree laser scanner to autonomously maneuver and generate a building floor plan accessible by the user.

      Shengnan, Geng; Xinglai, Wang; Hui, Feng; Beijing Institute of Astronautical Systems Engineering (International Foundation for Telemetering, 2016-11)
      To investigate strain-sensitive characteristics of fiber Bragg grating (FBG) sensors, a minimal sensing system consisting of multiplex FBG sensors and signal demodulating and processing instruments was constructed. FBG sensors were designed with different package structures for respectively sensing strain or temperature parameters, and they returned measurand-dependent wavelengths back to the interrogation system for measurement with high resolution. In this paper, tests were performed on structure samples with step-wise increase of deformations. Both FBG sensing system and strain gages were tested and compared. Experimental work proved that the FBG sensing system had a good level of accuracy in measuring the static response of the tested composite structure. Moreover the additional advantages such as damp proofing, high sampling rates and real-time inspection make the novel system especially appropriate for load monitoring and damage detection of aerospace structures.

      Kosbar, Kurt; Miles, Michael; Jetter, Joshua; Missouri University of Science and Technology, Department of Electrical and Computer Engineering (International Foundation for Telemetering, 2016-11)
      A common issue faced by people who are visually impaired is the difficulty of navigating and traveling through unfamiliar outdoor and indoor environments. The current state-of-the-art solutions to this problem consist of very expensive guide dogs and simple canes for obstacle detection. The team sought to develop a LIDAR-based navigation system with binaural auditory feedback that would allow the blind to navigate in unfamiliar environments and perform basic obstacle avoidance. Though basic auditory feedback relating to environmental obstacles was developed, further work is necessary to fine-tune the system and to determine the practicality of the device.

      Holmeide, Ø.; Schmitz, M.; OnTime Networks AS; OnTime Networks LLC (International Foundation for Telemetering, 2016-11)
      As Ethernet based networks have become the dominant choice for Flight Test Instrumentation (FTI) network applications, it is also clear that Ethernet based camera integration and applications have yet to become more wide spread for system level design and integration. A significant customer base utilizes either separate video compression systems or even just stand-a-lone gopro cameras for recording purposes in an unsynchronized ways. The use of uncompressed high definition (HD) video from GigE Vision Ethernet cameras for flight test applications is a significant issue in managing the large volumes of data produced by the cameras and forwarding them to any 1000BASE-T(x) switch port without packet loss and significant delays. Of course an easy approach to overcome this issue would be to just increase the network bandwidth from 1000BASE-T(x) to 10GBASE-SR, but most FTI systems just moved to 1000BASE-T(x) in the past years and therefore changing the overall system hardware is cost prohibited. One concern has been the use of compression algorithms to reduce the required video bandwidth, with the negative side effect that the image quality reduces and end-to-end latency increases, which is not acceptable for some applications. Further, it is important that data from cameras is available to a number of different multicast consumers within the FTI network, for example workstations, recorders and telemetry systems. These video data stream also require synchronization so that they can be analyzed in post processing.
    • The Application of Machine Learning Techniques in Flight Test Applications

      Cooke, Alan; Melia, Thomas; Grayson, Siobhan; Curtiss-Wright; University College Dublin, Insight Centre for Data Analytics (International Foundation for Telemetering, 2016-11)
      This paper discusses the use of diagnostics based on machine learning (ML) within a flight test context. The paper begins by discussing some of the problems associated with instrumenting a test aircraft and how they could be ameliorated using ML-based diagnostics. We then describe a number of types of supervised ML algorithms which can be used in this context. In addition, key practical aspects of applying these algorithms, such as feature engineering and parameter selection, are also discussed. The paper then outlines a real-world application developed by Curtiss-Wright, called Machine Learning for Advanced System Diagnostics (MLASD). This description includes key challenges that were encountered during the development process and how suitable input features were identified. Real-world results are also presented. Finally, we suggest some further applications of ML techniques, in addition to describing other areas of development.

      Ito, Sei; Honda, Takeshi; Tanaka, Toshihisa; Aoyama, Daiki; Kawasaki Heavy Industries, Ltd. (International Foundation for Telemetering, 2016-11)
      Through the use of early iNET-prototype IP Transceiver technology, Kawasaki Heavy Industries, Ltd. (KHI) has been able to communicate with a flight test vehicle. This technology provides a two-way high-capacity communication that has not been achieved with conventional telemetry. KHI has been authorized to use S-band IP Transceivers since 2014 in Japan. Then various communication tests have been performed. Last year we presented the result of the performance test of initial iNET-like RF network using a tethered aerostat at ITC. As the next phase, we have a plan of the test using a helicopter. The test is going to be conducted in September. We will present the results at ITC. This paper describes plans of the test which includes improved data backfill techniques.

      Irvin, Dana; Lokshin, Kirill; Puri, Amit; Ingenicomm, Inc. (International Foundation for Telemetering, 2016-11)
      The NASA Space Network (SN), which consists of the geosynchronous Tracking and Data Relay Satellite (TDRS) constellation and its associated ground elements, is a critical national space asset that provides near-continuous, high-bandwidth telemetry, command, and communications services for numerous spacecraft and launch vehicles. SN sustainment activities frequently involve testing of the numerous interfaces within the SN ground segment. To reduce the cost and complexity of such testing, NASA commissioned the development of the External Bearer Interface Test Set (XBIT), which enables ground interface verification using a high-volume test automation framework. This paper considers the use of the XBIT as a case study of automated ground segment verification and validation. The paper discusses the trade-offs between automated, semiautomated, and interactive ground interface testing and presents comparative test execution metrics to quantify the relative efficiency of these approaches.

      Grubbs, Elmer A.; Northern Arizona University (International Foundation for Telemetering, 2016-11)
      This paper describes a new way to look at telemetry data. We examine a way to use virtual reality to evaluate and view data from a large collection of stored signals. Each individual signal will have limits associated with it that allow us to determine whether any part of the signal exceeds those limits and if so what part(s) of the waveform contain these abnormalities. A program using virtual reality to illustrate the technique has been written and will be demonstrated as part of the conference presentation.

      Whittington, Austin J.; Youngs, Alexander G.; Harwell, John R.; Moodie, Myron L.; Southwest Research Institute (International Foundation for Telemetering, 2016-11)
      Configuring typical devices in the telemetry community requires the creation of complex, device-specific configuration files. While the grammar of the configuration files is vendor neutral, the device specific details are vendor specific. Thus, a naïve approach to building these files is to construct a file, test it against a device, and then iterate. The specification sheets (and other documents) for the device can serve as a guide, but the details of flight test configuration possibilities are immense and, in this community, typically not fully documented. This paper describes a process of creating a set of general rules describing characteristics of a configuration file and using those rules to discover the configuration constraints of telemetry devices automatically. The discovered constraints posed by a particular vendor’s device can then be quickly formed into a correct-by-construction constraint-based grammar for use in other systems.
    • Protecting Telemetry Data from Compromise Learning from the Mistakes of the Breached!

      Kalibjian, Jeff; Hewlett Packard Enterprise (International Foundation for Telemetering, 2016-11)
      Information has value and as such any network based computer (whether that network touches the Internet or not) has the potential to be hacked. Telemetry data is not immune to the threat. While there are a myriad of security sensor and analytics tools available for entities to deploy in order to protect their IT networks and assets on those networks, sometimes overlooked is also the wealth of research data available regarding the etiology of breaches that reveal fascinating, sometimes counterintuitive insights in the best ways to configure and integrate security applications to protect the organization. After reviewing the latest research data regarding computer and IT network compromise, security strategies implied in the research data appropriate to the security challenges encountered in the telemetry post processing environment will be thoroughly examined providing tangible methodologies that may be employed to better protect organization telemetry post processing and IT infrastructures.

      Ferrill, Micha; Avionics Test & Analysis Corporation (International Foundation for Telemetering, 2016-11)
      This paper will present our work developing a lightweight real-time display tool using opensource technologies. Specifically, the effort involves receiving data broadcast over UDP (User Datagram Protocol) from an IRIG 106 Chapter 10 compliant recorder and then selecting specific data elements for display within a web browser. A small processing engine written in Python runs the data collection and processing while a small web server also written in Python provides data values for display. The web browser portion utilizes an open-source JavaScript plotting library to display values in real time.
    • Software Defined Radio MIMO Telemetry Transmitter

      Kosbar, Kurt; Becker, Brandon; Bennett, Charles; Missouri University of Science and Technology, Department of Electrical and Computer Engineering (International Foundation for Telemetering, 2016-11)
      This paper describes the development of a small, low-cost, and flexible telemetry transmitter that can be used for multiple-input multiple-output (MIMO) communication systems. In the intended application, the transmitter will collect data from sensors on small quad copters or drones, regarding the vehicle’s attitude, location, movement, and other flight data. This will be combined into a single data stream, and base-band modulation applied by a field programmable gate array (FPGA). The FPGA output will control a separate RF modulation board, which will generate a pair of RF signals suitable for use in a 2x2 MIMO system. The original application uses the 902- 928MHz ISM band. The modulation format can be altered by changing the software for the FPGA.

      Diehl, Michael; Swain, Jason; Wilcox, Tab; Air Combat Systems Directorate (International Foundation for Telemetering, 2016-11)
      The United States (U.S.) Army Yuma Proving Ground (YPG) conducted a series of rotary-wing flight tests for the sole purpose of checking out Telemetry data link instrumentation. Four flights were conducted at YPG in February 2016 that built upon an earlier test flight conducted in June 2015. The most recent iteration of testing examined the benefits of frequency diversity on aircraft and the spatial diversity of receiving sites using existing hardware at YPG. Quantitative analysis from those flight results will be presented and include discussion on how results will affect future mission operations at YPG.

      Newton, Todd A.; Timme, M. Wayne; Abbott, Ben A.; Southwest Research Institute (International Foundation for Telemetering, 2016-11)
      The integrated Network Enhanced Telemetry (iNET) radios provide a two-way telemetry link that interconnects the airborne instrumentation system with ground-based systems. This capability brings the flight test telemetry domain into the realm of the more classic mesh networks in a mobile ad-hoc environment. The underlying radio frequency (RF) communication protocols defined in the iNET standards support a variety of classic networking protocols. The scheduling algorithms between Link Managers and radios can operate as a collision network, like classic Ethernet. This paper describes the communication protocols and scheduling algorithms of the iNET radios, and it provides results of their use in a self-scheduling algorithm such as a classical token ring network.

      Kilpatrick, Stephen; Westhart, Philip M; Abbott, Ben A.; Southwest Research Institute (International Foundation for Telemetering, 2016-11)
      The growth of network-based systems in flight test will present performance problems within the community. Legacy instrumentation systems are not capable of meeting the high-bandwidth, low latency data processing requirements of these next generation data acquisition systems. Ongoing research at Southwest Research Institute is exploring the use of a variety of commodity components, such as Graphics Processing Units (GPUs) and multicore Central Processing Units (CPUs), in ways that can be applied to both the small embedded components as well as the larger ground systems. This paper will explore an open, scalable Commercial-Off-The-Shelf (COTS) approach to bridge the gap and minimize changes to the legacy systems. Current results from this approach will be presented at the conference.

      Borah, Deva K.; Shrestha, Mandip; New Mexico State University, Klipsch School of Elec. & Comp. Eng. (International Foundation for Telemetering, 2016-11)
      Generalized space shift keying (GSSK) is a transmission scheme where only antenna indices are used to send information from the transmitter to a receiver. This paper investigates the best symbol set selection problem in GSSK multiple-input-multiple-output (MIMO) systems when the transmit antennas are correlated. Although multiple antennas can increase data rate and signal quality without increasing the bandwidth, spatial correlations among the antennas highly affect the performance of the system. The idea here is to maximize the inter-symbol Euclidean distance to obtain the best symbol set. Recently such an algorithm has been proposed for the visible light communication (VLC) systems. This paper adopts this VLC algorithm for radio frequency (RF) communication systems. The results show that the proposed symbol set design can provide several dBs of gain in the symbol error rate (SER) performance over randomly selected symbol sets in GSSK systems.

      DePardo, Dan; University of Kansas, Information and Telecommunication Technology Center (International Foundation for Telemetering, 2016-11)
      Telemetry frequency spectrum reductions and reallocations have prompted DoD test ranges to adapt to operation in less desirable frequency ranges, such as C-Band, posing significant challenges to operational capabilities that are vital to mission success. The design and development of new high performance components and systems is essential to the successful migration to C-Band spectrum allocations. This paper will detail the simulation and prototype test results of an RF output filter tailored for an advanced C-Band telemetry transmitter design.
    • Low Cost Unmanned Aircraft System for Autonomous Flight and Computer Vision Tasks

      Marcellin, Michael W.; Hung, David; Allred, Coby; Univ Arizona, Dept Elect & Comp Engn (International Foundation for Telemetering, 2016-11)
      The Arizona Autonomous Vehicles Club is participating in the 2016 AUVSI Student Unmanned Aerial Systems Competition which offers various challenges to be completed by a fully autonomous aerial vehicle. To complete various mission objectives, a low cost, rotary-wing platform was developed and deployed. The vehicle was assembled and upgraded for autonomous capability using commercially available components and open sourced software.

      Verges, Katherine; Graham, Richard; NSWC Corona Division (International Foundation for Telemetering, 2016-11)
      Currently, telemetry analysis is visually disconnected from the system being analyzed; analysts look at a series of two dimensional functions plotted over time that represent everything that happens. As the digital age continues to evolve and grow, a new technology is emerging in the world of entertainment: Virtual Reality (VR). VR describes a system that uses a headset to create a completely manufactured environment for the user to utilize and explore. This technology can be harnessed in order to translate raw telemetry data into an all-inclusive image of a system being analyzed in a 3-dimensional (3D) format. It would allow an analyst to fully visualize results and better understand what is occurring and has the potential to remove some of the subjectivity that comes with analyzing functions in order to help scientists and engineers to more efficiently improve their products. VR technology could be applied in a variety of fields-- defense, medicine, biology, and many more—and could help pave the way to technical advancements for a better world.
    • Spectrum Access R&D (SARD) Program: Conformal C-Band/Multi-band Antenna Project

      Kujiraoka, Scott; Fielder, Russell; Apalboym, Maxim (International Foundation for Telemetering, 2016-11)
      The Conformal C-Band/Multi-band Antenna project will support the AWS-3 auction by providing the technology to integrate C-Band or multi-band telemetry(TM) antennas on test articles such as missiles, weapons, or aircraft. These test articles would then provide C-Band or multi-band TM data to ground station receivers that are relocated to the C-Band frequency range through the AWS-3 Spectrum Relocation Fund program. This project would advance the technology of antennas in the C-Band region for test article TM integration. Successful use of C-Band and Multi-Band antennas for aeronautical mobile telemetry (AMT) on test and training ranges is dependent on the advancement of key technologies. This paper will detail the technology areas being matured by this project as well as the capabilities to be demonstrated.