Show simple item record

dc.contributor.authorTrujillo, Joshua T.
dc.contributor.authorBeilstein, Mark A.
dc.contributor.authorMosher, Rebecca A.
dc.date.accessioned2017-02-02T23:40:11Z
dc.date.available2017-02-02T23:40:11Z
dc.date.issued2016-12
dc.identifier.citationThe Argonaute-binding platform of NRPE1 evolves through modulation of intrinsically disordered repeats 2016, 212 (4):1094 New Phytologisten
dc.identifier.issn0028646X
dc.identifier.doi10.1111/nph.14089
dc.identifier.urihttp://hdl.handle.net/10150/622374
dc.description.abstract• Argonaute proteins are important effectors in RNA silencing pathways, but they must interact with other machinery to trigger silencing. Ago hooks have emerged as a conserved motif responsible for interaction with Argonaute proteins, but little is know about the sequence surrounding Ago hooks that must restrict or enable interaction with specific Argonautes. • Here we investigated the evolutionary dynamics of an Argonaute-binding platform in NRPE1, the largest subunit of RNA Polymerase V. We compared NRPE1 sequences from more than 50 species, including dense sampling of two plant lineages. • This study demonstrates that the Argonaute-binding platform of NRPE1 retains Ago-hooks, intrinsic disorder, and repetitive character while being highly labile at the sequence level. We reveal that loss of sequence conservation is due to relaxed selection and frequent expansions and contractions of tandem repeat arrays. These factors allow a complete restructuring of the Ago-binding platform over 50-60 million years. This evolutionary pattern is also detected in a second Ago-binding platform, suggesting it is a general mechanism. • The presence of labile repeat arrays in all analyzed NRPE1 Ago-binding platforms indicates that selection maintains repetitive character, potentially to retain the ability to rapidly restructure the Ago-binding platform.
dc.description.sponsorshipThis work is supported by National Science Foundation Grant MCB-1243608 to RAM.en
dc.language.isoenen
dc.publisherWILEY-BLACKWELLen
dc.relation.urlhttp://doi.wiley.com/10.1111/nph.14089en
dc.rights© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.en
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectArgonauteen
dc.subjectAgo hooken
dc.subjectIntrinsic disorderen
dc.subjectPolymerase Ven
dc.subjectRNA-directed DNA methylationen
dc.subjectRepeat expansionen
dc.subjectTandem Repeaten
dc.subjectRelaxed selectionen
dc.titleThe Argonaute-binding platform of NRPE1 evolves through modulation of intrinsically disordered repeatsen
dc.typeArticleen
dc.contributor.departmentThe School of Plant Sciences, The University of Arizonaen
dc.identifier.journalNew Phytologisten
dc.description.noteVersion of record online: 19 July 2016; 12 month embargo.en
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal accepted manuscripten
dc.contributor.institutionThe School of Plant Sciences; The University of Arizona; Tucson AZ 85721-0036 USA
dc.contributor.institutionThe School of Plant Sciences; The University of Arizona; Tucson AZ 85721-0036 USA
dc.contributor.institutionThe School of Plant Sciences; The University of Arizona; Tucson AZ 85721-0036 USA
refterms.dateFOA2017-07-20T00:00:00Z
html.description.abstract• Argonaute proteins are important effectors in RNA silencing pathways, but they must interact with other machinery to trigger silencing. Ago hooks have emerged as a conserved motif responsible for interaction with Argonaute proteins, but little is know about the sequence surrounding Ago hooks that must restrict or enable interaction with specific Argonautes. • Here we investigated the evolutionary dynamics of an Argonaute-binding platform in NRPE1, the largest subunit of RNA Polymerase V. We compared NRPE1 sequences from more than 50 species, including dense sampling of two plant lineages. • This study demonstrates that the Argonaute-binding platform of NRPE1 retains Ago-hooks, intrinsic disorder, and repetitive character while being highly labile at the sequence level. We reveal that loss of sequence conservation is due to relaxed selection and frequent expansions and contractions of tandem repeat arrays. These factors allow a complete restructuring of the Ago-binding platform over 50-60 million years. This evolutionary pattern is also detected in a second Ago-binding platform, suggesting it is a general mechanism. • The presence of labile repeat arrays in all analyzed NRPE1 Ago-binding platforms indicates that selection maintains repetitive character, potentially to retain the ability to rapidly restructure the Ago-binding platform.


Files in this item

Thumbnail
Name:
Trujillo_New_Phyto_for_PMC.pdf
Size:
2.242Mb
Format:
PDF
Description:
Final Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record