Development of PIAA Complex Mask Coronagraphs for large aperture ground-based telescopes
Publisher
SPIE-INT SOC OPTICAL ENGINEERINGCitation
Kevin Newman ; Dan Sirbu ; Ruslan Belikov and Olivier Guyon " Development of PIAA Complex Mask Coronagraphs for large aperture ground-based telescopes ", Proc. SPIE 9912, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, 99126L (July 22, 2016); doi:10.1117/12.2232164; http://dx.doi.org/10.1117/12.2232164Rights
© 2016 SPIE.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The Phase Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC) is an architecture for directly observing extrasolar planets, and can achieve performance near the theoretical limits for any direct-detection instrument. The PIAACMC architecture includes aspheric PIAA optics, and a complex phase-shifting focal plane mask that provides a pi phase shift to a portion of the on-axis starlight. The phase-shifted starlight is forced to interfere destructively with the un-shifted starlight, causing the starlight to be eliminated, and allowing a region for high-contrast imaging near the star. The PIAACMC architecture can be designed for segmented and obscured apertures, so it is particularly well suited for ground-based observing with the next generation of large telescopes. There will be unique scientific opportunities for directly observing Earth-like planets around nearby low-mass stars. We will discuss design strategies for adapting PIAACMC for the next generation of large ground-based telescopes, and present progress on the development of the focal plane mask technology. We also present simulations of wavefront control with PIAACMC, and suggest directions to apply the coronagraph architecture to future telescopes.Note
SPIE grants to authors of papers published in an SPIE Journal or Proceedings the right to post an author-prepared version or an official version (preferred version) of the published paper on an internal or external server controlled exclusively by the author/employer, provided that (a) such posting is noncommercial in nature and the paper is made available to users without charge; (b) an appropriate copyright notice and full citation appear with the paper, and (c) a link to SPIE's official online version of the abstract is provided using the DOI (Document Object Identifier) link.ISSN
0277-786XVersion
Final published versionae974a485f413a2113503eed53cd6c53
10.1117/12.2232164