EFFECT OF SURFACE-MANTLE WATER EXCHANGE PARAMETERIZATIONS ON EXOPLANET OCEAN DEPTHS
Name:
Komacek_2016_ApJ_832_54.pdf
Size:
705.4Kb
Format:
PDF
Description:
FInal Published Version
Affiliation
Univ Arizona, Dept Planetary Sci, Lunar & Planetary LabIssue Date
2016-11-16Keywords
methods: analyticalplanets and satellites: interiors
planets and satellites: oceans
planets and; satellites: tectonics
planets and satellites: terrestrial planets
Metadata
Show full item recordPublisher
IOP PUBLISHING LTDCitation
EFFECT OF SURFACE-MANTLE WATER EXCHANGE PARAMETERIZATIONS ON EXOPLANET OCEAN DEPTHS 2016, 832 (1):54 The Astrophysical JournalJournal
The Astrophysical JournalRights
© 2016. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld." On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady state after similar to 2 Gyr. Using these steady. states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (greater than or similar to 0.3% of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady. state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.ISSN
1538-4357Version
Final published versionSponsors
NASA headquarters under the NASA Earth and Space Science Fellowship Program [PLANET14F-0038]; NASA Astrobiology Institute Virtual Planetary Laboratory; NASA [NNH05ZDA001C]Additional Links
http://stacks.iop.org/0004-637X/832/i=1/a=54?key=crossref.2920c6b9e1db2826ebfcd63a5f8b8116ae974a485f413a2113503eed53cd6c53
10.3847/0004-637X/832/1/54
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Precise radial velocities of giant starsOrtiz, Mauricio; Reffert, Sabine; Trifonov, Trifon; Quirrenbach, Andreas; Mitchell, David S.; Nowak, Grzegorz; Buenzli, Esther; Zimmerman, Neil; Bonnefoy, Mickaël; Skemer, Andy; et al. (EDP SCIENCES S A, 2016-10-28)Context. For over 12 yr, we have carried out a precise radial velocity (RV) survey of a sample of 373 G- and K-giant stars using the Hamilton Echelle Spectrograph at the Lick Observatory. There are, among others, a number of multiple planetary systems in our sample as well as several planetary candidates in stellar binaries. Aims. We aim at detecting and characterizing substellar and stellar companions to the giant star HD 59686 A (HR 2877, HIP 36616). Methods. We obtained high-precision RV measurements of the star HD 59686 A. By fitting a Keplerian model to the periodic changes in the RVs, we can assess the nature of companions in the system. To distinguish between RV variations that are due to non-radial pulsation or stellar spots, we used infrared RVs taken with the CRIRES spectrograph at the Very Large Telescope. Additionally, to characterize the system in more detail, we obtained high-resolution images with LMIRCam at the Large Binocular Telescope. Results. We report the probable discovery of a giant planet with a mass of m(p) sin i = 6.92(-0.24)(+0.18) M-Jup orbiting at a(p) = 1.0860(-0.0007)(+0.0006) aufrom the giant star HD 59686 A. In addition to the planetary signal, we discovered an eccentric (e(B) = 0.729(-0.003)(+0.004)) binary companionwith a mass of m(B) sin i = 0.5296(-0.0008)(+0.0011) M-circle dot orbiting at a close separation from the giant primary with a semi-major axis of a(B) = 13.56(-0.14)(+0.18) au. Conclusions. The existence of the planet HD 59686 Ab in a tight eccentric binary system severely challenges standard giant planet formation theories and requires substantial improvements to such theories in tight binaries. Otherwise, alternative planet formation scenarios such as second-generation planets or dynamical interactions in an early phase of the system's lifetime need to be seriously considered to better understand the origin of this enigmatic planet.
-
ON THE COMPOSITION OF YOUNG, DIRECTLY IMAGED GIANT PLANETSMoses, J. I.; Marley, Mark S.; Zahnle, K.; Line, Michael R.; Fortney, Jonathan J.; Barman, Travis S.; Visscher, C.; Lewis, N. K.; Wolff, M. J.; Univ Arizona, Lunar & Planetary Lab (IOP PUBLISHING LTD, 2016-09-23)The past decade has seen significant progress on the direct detection and characterization of young, self-luminous giant planets at wide orbital separations from their host stars. Some of these planets show evidence for disequilibrium processes like transport-induced quenching in their atmospheres; photochemistry may also be important, despite the large orbital distances. These disequilibrium chemical processes can alter the expected composition, spectral behavior, thermal structure, and cooling history of the planets, and can potentially confuse determinations of bulk elemental ratios, which provide important insights into planet-formation mechanisms. Using a thermo/photochemical kinetics and transport model, we investigate the extent to which disequilibrium chemistry affects the composition and spectra of directly imaged giant exoplanets. Results for specific "young Jupiters" such as HR 8799 b and 51 Eri b are presented, as are general trends as a function of planetary effective temperature, surface gravity, incident ultraviolet flux, and strength of deep atmospheric convection. We find that quenching is very important on young Jupiters, leading to CO/CH4 and N-2/NH3 ratios much greater than, and H2O mixing ratios a factor of a few less than, chemical-equilibrium predictions. Photochemistry can also be important on such planets, with CO2 and HCN being key photochemical products. Carbon dioxide becomes a major constituent when stratospheric temperatures are low and recycling of water via the H-2 + OH reaction becomes kinetically stifled. Young Jupiters with effective temperatures less than or similar to 700 K are in a particularly interesting photochemical regime that differs from both transiting hot Jupiters and our own solar-system giant planets.
-
Tides Between the TRAPPIST-1 PlanetsHay, Hamish C. F. C.; Matsuyama, Isamu; Univ Arizona, Lunar & Planetary Lab (IOP PUBLISHING LTD, 2019-04-10)The TRAPPIST-1 system is sufficiently closely packed that tides raised by one planet on another are significant. We investigate whether this source of tidal heating is comparable to eccentricity tides raised by the star. Assuming a homogeneous body with a Maxwell rheology, we find that energy dissipation from stellar tides always dominates over that from planet–planet tides across a range of viscosities. TRAPPIST-1 g may experience the greatest proportion of planet–planet tidal heating, where it can account for between 2% and 20% of the total amount of tidal heating, for high-viscosity (1021 Pa s) and low-viscosity (1014 Pa s) regimes, respectively. If planet–planet tidal heating is to exceed that from stellar eccentricity tides, orbital eccentricities must be no more than e = 10−3–10−4 for most of the TRAPPIST-1 planets.