A VERSATILE TECHNIQUE TO ENABLE SUB-MILLI-KELVIN INSTRUMENT STABILITY FOR PRECISE RADIAL VELOCITY MEASUREMENTS: TESTS WITH THE HABITABLE-ZONE PLANET FINDER
Name:
Stefansson_2016_ApJ_833_175.pdf
Size:
2.140Mb
Format:
PDF
Description:
Final Published Version
Author
Stefansson, GudmundurHearty, Frederick
Robertson, Paul
Mahadevan, Suvrath
Anderson, Tyler
Levi, Eric
Bender, Chad
Nelson, Matthew
Monson, Andrew
Blank, Basil
Halverson, Samuel
Henderson, Chuck
Ramsey, Lawrence
Roy, Arpita
Schwab, Christian
Terrien, Ryan
Affiliation
Univ Arizona, Steward ObservIssue Date
2016-12-16
Metadata
Show full item recordPublisher
IOP PUBLISHING LTDCitation
A VERSATILE TECHNIQUE TO ENABLE SUB-MILLI-KELVIN INSTRUMENT STABILITY FOR PRECISE RADIAL VELOCITY MEASUREMENTS: TESTS WITH THE HABITABLE-ZONE PLANET FINDER 2016, 833 (2):175 The Astrophysical JournalJournal
The Astrophysical JournalRights
© 2016. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Insufficient instrument thermomechanical stability is one of the many roadblocks for achieving 10 cm s(-1) Doppler radial velocity precision, the precision needed to detect Earth-twins orbiting solar-type stars. Highly temperature and pressure stabilized spectrographs allow us to better calibrate out instrumental drifts, thereby helping in distinguishing instrumental noise from astrophysical stellar signals. We present the design and performance of the Environmental Control System (ECS) for the Habitable-zone Planet Finder (HPF), a high-resolution (R = 50,000) fiber-fed near-infrared (NIR) spectrograph for the 10 m Hobby-Eberly Telescope at McDonald Observatory. HPF will operate at 180 K, driven by the choice of an H2RG NIR detector array with a 1.7 mu m cutoff. This ECS has demonstrated 0.6 mK rms stability over 15 days at both 180 and 300 K, and maintained high-quality vacuum (< 10 (7) Torr) over months, during long-term stability tests conducted without a planned passive thermal enclosure surrounding the vacuum chamber. This control scheme is versatile and can be applied as a blueprint to stabilize future NIR and optical high-precision Doppler instruments over a wide temperature range from similar to 77 K to elevated room temperatures. A similar ECS is being implemented to stabilize NEID, the NASA/NSF NN-EXPLORE spectrograph for the 3.5 m WIYN telescope at Kitt Peak, operating at 300 K. A [full SolidWorks 3D-CAD model] and a comprehensive parts list of the HPF ECS are included with this manuscript to facilitate the adaptation of this versatile environmental control scheme in the broader astronomical community.ISSN
1538-4357Version
Final published versionSponsors
Center for Exoplanets and Habitable Worlds; Pennsylvania State University; Eberly College of Science; Pennsylvania Space Grant Consortium; Leifur Eiriksson Foundation Scholarship; NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX16AO28H]; NASA through the Sagan Fellowship Program; NSF [AST1006676, AST 1126413, AST 1310885]; NASA Astrobiology Institute [NNA09DA76A]Additional Links
http://stacks.iop.org/0004-637X/833/i=2/a=175?key=crossref.3aabf51a6904b3fa6ebaf482bdc9ae4fae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/833/2/175
