Show simple item record

dc.contributor.authorLammers, C.
dc.contributor.authorStein, M.
dc.contributor.authorBerger, C.
dc.contributor.authorMöller, C.
dc.contributor.authorFuchs, C.
dc.contributor.authorRuiz Perez, A.
dc.contributor.authorRahimi-Iman, A.
dc.contributor.authorHader, J.
dc.contributor.authorMoloney, J. V.
dc.contributor.authorStolz, W.
dc.contributor.authorKoch, S. W.
dc.contributor.authorKoch, M.
dc.date.accessioned2017-03-01T23:55:13Z
dc.date.available2017-03-01T23:55:13Z
dc.date.issued2016-12-05
dc.identifier.citationGain spectroscopy of a type-II VECSEL chip 2016, 109 (23):232107 Applied Physics Lettersen
dc.identifier.issn0003-6951
dc.identifier.issn1077-3118
dc.identifier.doi10.1063/1.4971333
dc.identifier.urihttp://hdl.handle.net/10150/622689
dc.description.abstractUsing optical pump-white light probe spectroscopy, the gain dynamics is investigated for a vertical-external-cavity surface-emitting laser chip, which is based on a type-II heterostructure. The active region of the chip consists of a GaAs/(GaIn) As/Ga(AsSb)/(GaIn) As/GaAs multiple quantum well. For this structure, a fully microscopic theory predicts a modal room temperature gain at a wavelength of 1170 nm, which is confirmed by the experimental spectra. The results show a gain buildup on the type-II chip that is delayed relative to that of a type-I chip. This slower gain dynamics is attributed to a diminished cooling rate arising from the reduced electron-hole scattering. Published by AIP Publishing.
dc.description.sponsorshipDeutsche Forschungsgemeinschaft via the Collaborative Research Center 1083 [DFG:SFB1083]; AFOSR [FA9550-14-1-0062]en
dc.language.isoenen
dc.publisherAMER INST PHYSICSen
dc.relation.urlhttp://scitation.aip.org/content/aip/journal/apl/109/23/10.1063/1.4971333en
dc.rights© 2016 Author(s). Published by AIP Publishing.en
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.titleGain spectroscopy of a type-II VECSEL chipen
dc.typeArticleen
dc.contributor.departmentUniv Arizona, Coll Opt Scien
dc.identifier.journalApplied Physics Lettersen
dc.description.note12 month embargo; published online 8 December 2016en
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
dc.contributor.institutionDepartment of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
dc.contributor.institutionDepartment of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
dc.contributor.institutionDepartment of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
dc.contributor.institutionDepartment of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
dc.contributor.institutionDepartment of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
dc.contributor.institutionNAsPIII/V GmbH, Hans-Meerwein-Straße, 35032 Marburg, Germany
dc.contributor.institutionDepartment of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
dc.contributor.institutionCollege of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721, USA
dc.contributor.institutionCollege of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721, USA
dc.contributor.institutionDepartment of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
dc.contributor.institutionDepartment of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
dc.contributor.institutionDepartment of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
refterms.dateFOA2017-12-09T00:00:00Z
html.description.abstractUsing optical pump-white light probe spectroscopy, the gain dynamics is investigated for a vertical-external-cavity surface-emitting laser chip, which is based on a type-II heterostructure. The active region of the chip consists of a GaAs/(GaIn) As/Ga(AsSb)/(GaIn) As/GaAs multiple quantum well. For this structure, a fully microscopic theory predicts a modal room temperature gain at a wavelength of 1170 nm, which is confirmed by the experimental spectra. The results show a gain buildup on the type-II chip that is delayed relative to that of a type-I chip. This slower gain dynamics is attributed to a diminished cooling rate arising from the reduced electron-hole scattering. Published by AIP Publishing.


Files in this item

Thumbnail
Name:
2E4971333.pdf
Size:
679.2Kb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record