• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Ambient observations of hygroscopic growth factor and f (RH) below 1: Case studies from surface and airborne measurements

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Shingler_et_al-2016-Journal_of ...
    Size:
    3.115Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Shingler, Taylor cc
    Sorooshian, Armin cc
    Ortega, Amber cc
    Crosbie, E. cc
    Wonaschütz, Anna
    Perring, Anne E. cc
    Beyersdorf, Andreas cc
    Ziemba, L. D. cc
    Jimenez, J. L. cc
    Campuzano-Jost, P. cc
    Mikoviny, Tomas cc
    Wisthaler, Armin cc
    Russell, Lynn M. cc
    Show allShow less
    Affiliation
    Univ Arizona, Dept Chem & Environm Engn
    Univ Arizona, Dept Hydrol & Atmospher Sci
    Issue Date
    2016-11-27
    
    Metadata
    Show full item record
    Publisher
    AMER GEOPHYSICAL UNION
    Citation
    Ambient observations of hygroscopic growth factor and f(RH) below 1: Case studies from surface and airborne measurements 2016, 121 (22):13,661 Journal of Geophysical Research: Atmospheres
    Journal
    Journal of Geophysical Research: Atmospheres
    Rights
    © 2016. American Geophysical Union. All Rights Reserved.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    This study reports a detailed set of ambient observations of optical/physical shrinking of particles from exposure to water vapor with consistency across different instruments and regions. Data have been utilized from (i) a shipboard humidified tandem differential mobility analyzer during the Eastern Pacific Emitted Aerosol Cloud Experiment in 2011, (ii) multiple instruments on the NASA DC-8 research aircraft during the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys in 2013, and (iii) the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe during ambient measurements in Tucson, Arizona, during summer 2014 and winter 2015. Hygroscopic growth factor (ratio of humidified-to-dry diameter, GF = D-p,D-wet/D-p,D-dry) and f(RH) (ratio of humidified-to-dry scattering coefficients) values below 1 were observed across the range of relative humidity (RH) investigated (75-95%). A commonality of observations of GF and f(RH) below 1 in these experiments was the presence of particles enriched with carbonaceous matter, especially from biomass burning. Evidence of externally mixed aerosol, and thus multiple GFs with at least one GF < 1, was observed concurrently with f(RH) < 1 during smoke periods. Possible mechanisms responsible for observed shrinkage are discussed and include particle restructuring, volatilization effects, and refractive index modifications due to aqueous processing resulting in optical size modification. To further investigate ambient observations of GFs and f(RH) values less than 1, it is recommended to add an optional prehumidification bypass module to hygroscopicity instruments, to preemptively collapse particles prior to controlled RH measurements.
    Note
    6 month embargo; Published Online: 23 November 2016
    ISSN
    2169897X
    DOI
    10.1002/2016JD025471
    Version
    Final published version
    Sponsors
    NASA [NNX12AC10G, NNX14AP75G, NNX12AC03G, NNX15AT96G]; ONR [N00014-16-1-2567, N00014-10-1-0811]; NSF [AGS-1008848, AGS-1048995]; NASA Earth and Space Science Fellowship [NNX14AK79H]; Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG); Visiting Scientist Program at the National Institute of Aerospace (NIA)
    Additional Links
    http://doi.wiley.com/10.1002/2016JD025471
    ae974a485f413a2113503eed53cd6c53
    10.1002/2016JD025471
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.