Show simple item record

dc.contributor.authorDanhof, Heather A.
dc.contributor.authorVylkova, Slavena
dc.contributor.authorVesely, Elisa M.
dc.contributor.authorFord, Amy E.
dc.contributor.authorGonzalez-Garay, Manuel
dc.contributor.authorLorenz, Michael C.
dc.date.accessioned2017-03-03T18:24:31Z
dc.date.available2017-03-03T18:24:31Z
dc.date.issued2016-11-15
dc.identifier.citationRobust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids 2016, 7 (6):e01646-16 mBioen
dc.identifier.issn2150-7511
dc.identifier.doi10.1128/mBio.01646-16
dc.identifier.urihttp://hdl.handle.net/10150/622764
dc.description.abstractThe opportunistic fungal pathogen Candida albicans thrives within diverse niches in the mammalian host. Among the adaptations that underlie this fitness is an ability to utilize a wide array of nutrients, especially sources of carbon that are disfavored by many other fungi; this contributes to its ability to survive interactions with the phagocytes that serve as key barriers against disseminated infections. We have reported that C. albicans generates ammonia as a byproduct of amino acid catabolism to neutralize the acidic phagolysosome and promote hyphal morphogenesis in a manner dependent on the Stp2 transcription factor. Here, we report that this species rapidly neutralizes acidic environments when utilizing carboxylic acids like pyruvate, alpha-ketoglutarate (alpha KG), or lactate as the primary carbon source. Unlike in cells growing in amino acid-rich medium, this does not result in ammonia release, does not induce hyphal differentiation, and is genetically distinct. While transcript profiling revealed significant similarities in gene expression in cells grown on either carboxylic or amino acids, genetic screens for mutants that fail to neutralize alpha KG medium identified a nonoverlapping set of genes, including CWT1, encoding a transcription factor responsive to cell wall and nitrosative stresses. Strains lacking CWT1 exhibit retarded alpha KG-mediated neutralization in vitro, exist in a more acidic phagolysosome, and are more susceptible to macrophage killing, while double cwt1 Delta stp2 Delta mutants are more impaired than either single mutant. Together, our observations indicate that C. albicans has evolved multiple ways to modulate the pH of host-relevant environments to promote its fitness as a pathogen. IMPORTANCE The fungal pathogen Candida albicans is a ubiquitous and usually benign constituent of the human microbial ecosystem. In individuals with weakened immune systems, this organism can cause potentially life-threatening infections and is one of the most common causes of hospital-acquired infections. Understanding the interactions between C. albicans and immune phagocytic cells, such as macrophages and neutrophils, will define the mechanisms of pathogenesis in this species. One such adaptation is an ability to make use of nonstandard nutrients that we predict are plentiful in certain niches within the host, including within these phagocytic cells. We show here that the metabolism of certain organic acids enables C. albicans to neutralize acidic environments, such as those within macrophages. This phenomenon is distinct in several significant ways from previous reports of similar processes, indicating that C. albicans has evolved multiple mechanisms to combat the harmful acidity of phagocytic cells.
dc.description.sponsorshipU.S. Public Health Service [R01AI075091, R21AI124675]; institutional T32 training grant [T32AI055449]en
dc.language.isoenen
dc.publisherAMER SOC MICROBIOLOGYen
dc.relation.urlhttp://mbio.asm.org/lookup/doi/10.1128/mBio.01646-16en
dc.rights© 2016 Danhof et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.en
dc.titleRobust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acidsen
dc.typeArticleen
dc.contributor.departmentUniv Arizona, Dept Med, Ctr Biomed Informat & Biostaten
dc.identifier.journalmBioen
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
refterms.dateFOA2018-08-15T16:27:54Z
html.description.abstractThe opportunistic fungal pathogen Candida albicans thrives within diverse niches in the mammalian host. Among the adaptations that underlie this fitness is an ability to utilize a wide array of nutrients, especially sources of carbon that are disfavored by many other fungi; this contributes to its ability to survive interactions with the phagocytes that serve as key barriers against disseminated infections. We have reported that C. albicans generates ammonia as a byproduct of amino acid catabolism to neutralize the acidic phagolysosome and promote hyphal morphogenesis in a manner dependent on the Stp2 transcription factor. Here, we report that this species rapidly neutralizes acidic environments when utilizing carboxylic acids like pyruvate, alpha-ketoglutarate (alpha KG), or lactate as the primary carbon source. Unlike in cells growing in amino acid-rich medium, this does not result in ammonia release, does not induce hyphal differentiation, and is genetically distinct. While transcript profiling revealed significant similarities in gene expression in cells grown on either carboxylic or amino acids, genetic screens for mutants that fail to neutralize alpha KG medium identified a nonoverlapping set of genes, including CWT1, encoding a transcription factor responsive to cell wall and nitrosative stresses. Strains lacking CWT1 exhibit retarded alpha KG-mediated neutralization in vitro, exist in a more acidic phagolysosome, and are more susceptible to macrophage killing, while double cwt1 Delta stp2 Delta mutants are more impaired than either single mutant. Together, our observations indicate that C. albicans has evolved multiple ways to modulate the pH of host-relevant environments to promote its fitness as a pathogen. IMPORTANCE The fungal pathogen Candida albicans is a ubiquitous and usually benign constituent of the human microbial ecosystem. In individuals with weakened immune systems, this organism can cause potentially life-threatening infections and is one of the most common causes of hospital-acquired infections. Understanding the interactions between C. albicans and immune phagocytic cells, such as macrophages and neutrophils, will define the mechanisms of pathogenesis in this species. One such adaptation is an ability to make use of nonstandard nutrients that we predict are plentiful in certain niches within the host, including within these phagocytic cells. We show here that the metabolism of certain organic acids enables C. albicans to neutralize acidic environments, such as those within macrophages. This phenomenon is distinct in several significant ways from previous reports of similar processes, indicating that C. albicans has evolved multiple mechanisms to combat the harmful acidity of phagocytic cells.


Files in this item

Thumbnail
Name:
mBio-2016-Danhof-.pdf
Size:
2.700Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record