Altered gene expression profile in a mouse model of SCN8A encephalopathy
Name:
RNAseq_text_Hammer.pdf
Size:
591.4Kb
Format:
PDF
Description:
Final Accepted Manuscript
Author
Sprissler, Ryan S.Wagnon, Jacy L.
Bunton-Stasyshyn, Rosie K.
Meisler, Miriam H.
Hammer, Michael F.

Affiliation
ARL Division of Biotechnology, University of ArizonaDepartment of Neurology, University of Arizona
Issue Date
2017-02
Metadata
Show full item recordPublisher
ACADEMIC PRESS INC ELSEVIER SCIENCECitation
Altered gene expression profile in a mouse model of SCN8A encephalopathy 2017, 288:134 Experimental NeurologyJournal
Experimental NeurologyRights
© 2016 Elsevier Inc. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
SCN8A encephalopathy is a severe, early-onset epilepsy disorder resulting from de novo gain-of-function mutations in the voltage-gated sodium channel Na(v)1.6. To identify the effects of this disorder on mRNA expression, RNA-seq was performed on brain tissue from a knock-in mouse expressing the patient mutation p.Asn1768Asp (N1768D). RNA was isolated from forebrain, cerebellum, and brainstem both before and after seizure onset, and from age-matched wildtype littermates. Altered transcript profiles were observed only in forebrain and only after seizures. The abundance of 50 transcripts increased more than 3-fold and 15 transcripts decreased more than 3 fold after seizures. The elevated transcripts included two anti-convulsant neuropeptides and more than a dozen genes involved in reactive astrocytosis and response to neuronal damage. There was no change in the level of transcripts encoding other voltage-gated sodium, potassium or calcium channels. Reactive astrocytosis was observed in the hippocampus of mutant mice after seizures. There is considerable overlap between the genes affected in this genetic model of epilepsy and those altered by chemically induced seizures, traumatic brain injury, ischemia, and inflammation. The data support the view that gain-of-function mutations of SCN8A lead to pathogenic alterations in brain function contributing to encephalopathy.Description
12 month embargo; Available online 9 November 2016ISSN
00144886Version
Final accepted manuscriptSponsors
NIH [R01 NS34509]; Dravet Syndrome FoundationAdditional Links
http://linkinghub.elsevier.com/retrieve/pii/S0014488616303582ae974a485f413a2113503eed53cd6c53
10.1016/j.expneurol.2016.11.002