• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Quantified Assessment of the Meteorological Variables Facilitating the Establishment of the Karakoram Anomaly

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15045_sip1_m.pdf
    Size:
    2.451Mb
    Format:
    PDF
    Download
    Author
    Bashir, Furrukh cc
    Issue Date
    2016
    Keywords
    Climate Change
    Glaciers
    Global Warming
    Positive Mass Balance
    The Karakoram Anomaly
    Upper Indus Basin
    Advisor
    Gupta, Hoshin V.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Lofty Hindukush, Karakoram and Himalayan (HKH) mountain ranges centered in the Northern Pakistan are host to some of the world’s largest glaciers outside the Polar Regions and are a source of water for drinking and irrigation to the millions of people living downstream. With the increase in the global temperatures, glaciers are reported as retreating globally. However, some of the glaciers in the Karakoram mountain ranges are reported as surging with positive mass balance, especially since the 1990s. This phenomenon is described as "The Karakoram Anomaly". Various efforts have been made to explain the state and fate of the HKH glaciers in the recent past. However, they are limited to quantification of the change in temperature, precipitation and river runoff, or through their impact on future climate projections. For the HKH region, temperature fluctuations have been out of the phase with hemispheric trends for past several centuries. Therefore, climate change in this region is not solely the temperature effect on melting as compared to other glaciated regions. To identify the reasons for the establishment of the Karakoram Anomaly, monthly mean climatic variables for last five decades, reported from meteorological observatories at the valley floors in HKH region, are analyzed. In addition to the climatic variables of temperature and precipitation, monthly mean synoptic observations reported by meteorological observatories in both morning and afternoon, along with monthly mean radiosonde data are used. From these data the role of different near-surface and upper atmospheric meteorological variables in maintaining the positive mass balance of the glaciers and the development of the Karakoram Anomaly can be explained. An overall warming in the region is observed. The trends in the summer temperatures, which were reported as decreasing a decade ago, are now found as increasing in updated time series. However, the overall gradient is still negative. The winter mean and maximum temperatures are increasing with accelerated trends. Both maximum and minimum temperatures in summer are not diverging anymore and the diurnal temperature range is decreasing in the most recent decade. The afternoon cloudiness is found as increasing throughout the year except for spring, which is indicative of an increase in convective uplifting. Moreover, humidity is increasing all over the region; due to evaporation in the spring, from monsoon moisture advection in summer, and due to the recycling of monsoon moisture in autumn. Furthermore, near-surface wind speed and net radiation in the region are decreasing, explaining the decrease in the summer minimum temperature and the presence of the cloudy skies. The decrease in near-surface wind speed, and net radiation, and increase in water vapor pressure put a limit on the evapotranspiration process. In addition, winter and summer precipitation is increasing. The aridity index, which is based on the ratio of precipitation and reference evaporation, indicates that region is turning moisture surplus and energy deficient. Surface atmospheric pressure and 700 hPa geopotential height is increasing due to warming in the bottom layers of the troposphere. Nighttime inversion in the lower tropospheric layers is decreasing due to warming. Analysis of gridded observed and reanalysis datasets indicates that they are not presenting a signal of change in accordance with the instrumental record. Furthermore, it is found that meteorological conditions during the summer season are still favorable for the sustenance of glaciers whereas more melting may occur in the spring season that may increase the early season river flows and may affect lower lying portions of the debris-free glaciers.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Hydrometeorology
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.