• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Measurement Quantization in Compressive Imaging

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15223_sip1_m.pdf
    Size:
    6.522Mb
    Format:
    PDF
    Download
    Author
    Lin, Yuzhang
    Issue Date
    2016
    Keywords
    Quantization
    Rate allocation
    Reconstruction algorithm
    Compressive imaging
    Advisor
    Ashok, Amit
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In compressive imaging the measurement quantization and its impact on the overall system performance is an important problem. This work considers several challenges that derive from quantization of compressive measurements. We investigate the design of scalar quantizer (SQ), vector quantizer (VQ), and tree-structured vector quantizer (TSVQ) for information-optimal compressive imaging. The performance of these quantizer designs is quantified for a variety of compression rates and measurement signal-to-noise-ratio (SNR) using simulation studies. Our simulation results show that in the low SNR regime a low bit-depth (3 bit per measurement) SQ is sufficient to minimize the degradation due to measurement quantization. However, in mid-to-high SNR regime, quantizer design requires higher bit-depth to preserve the information in the measurements. Simulation results also confirm the superior performance of VQ over SQ. As expected, TSVQ provides a good tradeoff between complexity and performance, bounded by VQ and SQ designs on either side of performance/complexity limits. In compressive image the size of final measurement data (i.e. in bits) is also an important system design metric. In this work, we also optimize the compressive imaging system using this design metric, and investigate how to optimally allocate the number of measurement and bits per measurement, i.e. the rate allocation problem. This problem is solved using both an empirical data driven approach and a model-based approach. As a function of compression rate (bits per pixel), our simulation results show that compressive imaging can outperform traditional (non-compressive) imaging followed by image compression (JPEG 2000) in low-to-mid SNR regime. However, in high SNR regime traditional imaging (with image compression) offers a higher image fidelity compare to compressive imaging for a given data rate. Compressive imaging using blockwise measurements is partly limited due to its inability to perform global rate allocation. We also develop an optimal minimum mean-square error (MMSE) reconstruction algorithm for quantized compressed measurements. The algorithm employs Monte-Carlo Markov Chain (MCMC) sampling technique to estimate the posterior mean. Simulation results show significant improvement over approximate MMSE algorithms.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.