• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Computational Optimization of Compliance Matched Tissue Engineered Vascular Grafts

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15194_sip1_m.pdf
    Size:
    1.701Mb
    Format:
    PDF
    Download
    Author
    Harrison, Scott
    Issue Date
    2016
    Keywords
    graft
    optimization
    tissue-engineering
    compliance
    Advisor
    Vande Geest, Jonathan P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Coronary heart disease is a leading cause of death among Americans for which coronary artery bypass graft (CABG) surgery is a standard surgical treatment. The success of CABG surgery is impaired by the compliance mismatch between vascular grafts and native vessels. Tissue engineered vascular grafts (TEVGs) have the potential to be compliance matched and thereby reduce the risk of graft failure. Glutaraldehyde (GLUT) vapor-crosslinked gelatin/fibrinogen constructs were fabricated and mechanically tested in a previous study by our research group at 2, 8, and 24 hours of GLUT vapor exposure. Constructs electrospun with tropoelastin in addition to gelatin and fibrinogen fibers were also fabricated and tested for the same amounts of GLUT vapor exposure. The current study details a computational method that was developed to predict the material properties of our constructs for crosslinking times between 2 and 24 hours by interpolation and regression of the 2, 8, and 24 hour crosslinking time data. Matlab and Abaqus were used to determine the optimal combination of fabrication parameters to produce compliance matched constructs. The validity of the method was first tested on a 16 hour crosslinked gelatin/fibrinogen construct of 130μm thickness. The predicted compliance was 0.00059 mmHg-1 while the experimentally determined compliance was 0.00065 mmHg-1, a relative difference of 9.2%. Prior data in our laboratory has shown the compliance of the left anterior descending porcine coronary (LADC) artery to be 0.00071 ± 0.0003 mmHg-1. The optimization algorithm predicts that a 258μm thick construct that is GLUT vapor crosslinked for 8.1 hours would match LADC compliance. The algorithm was expanded to predict the compliance of constructs consisting of alternating layers of tropoelastin/gelatin/fibrinogen and gelatin/fibrinogen. A four layered graft was designed and fabricated using this optimization routine. The layered construct was found to have a compliance of 0.00051 mmHg-1 while the predicted compliance was 0.00061 mmHg-1, a difference of 16%. This is a promising method for matching the compliance of our TEVGs with the native tissue of various specimens.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Mechanical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.