• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Scharnhorst Effect: Superluminality and Causality in Effective Field Theories

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15132_sip1_m.pdf
    Size:
    6.072Mb
    Format:
    PDF
    Download
    Author
    de Clark, Sybil Gertrude
    Issue Date
    2016
    Keywords
    Effective
    Faster-than-light
    QFT
    Scharnhorst
    Superluminal
    Physics
    Causality
    Advisor
    Fleming, Sean
    Wüthrich, Christian
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    We present two re-derivations of the Scharnhorst effect. The latter was first obtained in 1990 by Klaus Scharnhorst, soon followed by Gabriel Barton, and consists in the theoretical prediction that the phase velocity of photons propagating in a Casimir vacuum normal to the plates would be larger than c. The first derivation given in the present work is relevant for the debates that have taken place in the physics literature regarding a possible greater-than-c value of the signal velocity. Indeed because the phase velocity result also held for the group velocity, the issue soon arose as to whether the same could be said for the signal velocity. Several arguments were presented against this notion, notably to the effect that measurement uncertainties would preclude such a measurement. These notably relied on the fact that the known phase velocity result is only valid within a certain frequency regime. Scharnhorst and Barton responded by arguing that given their previous result, the Kramers-Kronig relations imply one of two options: either the greater-than-c result holds for the signal velocity as well, or the Casimir vacuum behaves like an amplifying medium for some frequencies. Furthermore, the effect was later rederived and generalized within the framework of an effective metric approach, which has been argued to obviate the worries regarding causal paradoxes often associated with the possibility of faster-than-c signalling. However concerns related to theory errors as well as to the measurement uncertainties that had surfaced in the earlier debate have remained salient. By re-deriving the phase velocity using Soft-Collinear Effective Theory (SCET), one can address some of these concerns. Indeed, with regard to theory errors, SCET provides us with a framework where higher order corrections are known to be power-suppressed because SCET ensures that the expansion parameters are multiplied by factors of order 1. As a result, with due qualifications inherent to the nature of effective field theory, the result obtained within the SCET approach cannot be invalidated by higher order corrections. Furthermore, the theoretical description offered by SCET provides an argument relevant to the point that measurement uncertainties would prevent measuring the signal speed to be faster-than-c. Indeed, SCET implies the interaction between the Casimir vacuum and the propagating photon to be such that the latter would have the same phase velocity irrespective of its frequency. This in turn would entail that its signal velocity would be equal to this phase velocity, which is faster-than-c. The second calculation presented is concerned with the physical interpretation of the Scharnhorst effect, and constitutes an attempt at re-deriving it within source theory. Existing derivations imply that the Scharnhorst effect can be attributed to vacuum fluctuations. Other physical effects that share this feature have also been derived without any reference to the vacuum, but as due to source fields instead. We attempt a similar derivation for the Scharnhorst effect.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Physics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.