• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    FPGA-Based LDPC Coded Modulations for Optical Transport Networks

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15184_sip1_m.pdf
    Size:
    10.45Mb
    Format:
    PDF
    Download
    Author
    Zou, Ding
    Issue Date
    2017
    Keywords
    Fiber optics
    Forward Error Correction
    Low-density parity-check codes
    Optical Communications
    Orthogonal Frequency Division Multiplexing
    Coherent Communications
    Advisor
    Djordjevic, Ivan B.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Current coherent optical transmission systems focus on single carrier solutions for 400Gb/s serial transmission to support traffic growth in fiber-optics communications, together with a few subcarriers multiplexed solutions for the 1 Tb/s serial data rates and beyond. With the advancement of analog-to-digital converter technologies, high order modulation formats up to 64-QAM with symbol rate up to 72Gbaud have been demonstrated experimentally with Raman amplification. To enable such high serial data rates, it is highly desirable to implement in hardware low complexity digital signal processing schemes and advanced forward error correction coding with powerful error correction capability. In this dissertation, to enable high-speed optical communications, we first proposed an efficient FPGA architecture of high-performance binary and non-binary LDPC engines that can support throughputs of multiple Gb/s, which have low power consumption, providing high net coding gains at a target bit-error rate of 10-15. Further, we implement a generalized LDPC coding based rate adaptive binary LDPC coding scheme and puncturing based rate adaptive non-binary LDPC coding scheme, where large number of parameters can be reconfigured in order to cope with the time-varying optical channel conditions and service requirements. Based on comprehensive analysis on complexity, latency, and power consumption we demonstrate that the proposed efficient implementation represents a feasible solution for the next generation optical communication networks. Additionally, we investigate the FPGA implementation of rate adaptive regular LDPC coding combined with up to six high-order modulation formats and demonstrate high net coding gain performance and demonstrated a bit loading algorithm for irregular LDPC coding. Lastly, we present the real-time implementation of a direct detection OFDM transceiver with multi Giga symbols/s symbol rates in a back-to-back configuration.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.