Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the India-Asia collision
Name:
Huang_et_al-2017-Journal_of_Ge ...
Size:
4.308Mb
Format:
PDF
Description:
Final Published Version
Author
Huang, Wentao
Lippert, Peter C.

Jackson, Michael J.

Dekkers, Mark J.

Zhang, Yang
Li, Juan
Guo, Zhaojie

Kapp, Paul

van Hinsbergen, Douwe J. J.

Affiliation
Univ Arizona, Dept GeosciIssue Date
2017-02
Metadata
Show full item recordPublisher
AMER GEOPHYSICAL UNIONCitation
Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the India-Asia collision 2017, 122 (2):808 Journal of Geophysical Research: Solid EarthRights
© 2017. American Geophysical Union. All Rights Reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The characteristic remanent magnetization (ChRM) isolated from Paleogene carbonate rocks of the Zongpu Formation in Gamba (28.3 degrees N, 88.5 degrees(E) of southern Tibet has previously been interpreted to be primary. These data are pertinent for estimating the width of Greater India and dating the initiation of India-Asia collision. We have reanalyzed the published ChRM directions and completed thorough rock magnetic tests and petrographic observations on specimens collected throughout the previously investigated sections. Negative nonparametric fold tests demonstrate that the ChRM has a synfolding or postfolding origin. Rock magnetic analyses reveal that the dominant magnetic carrier is magnetite. "Wasp-waisted" hysteresis loops, suppressed Verwey transitions, high frequency-dependent in-phase magnetic susceptibility, and evidence that > 70% of the ferrimagnetic material is superparamagnetic at room temperature are consistent with the rock-magnetic fingerprint of remagnetized carbonate rocks. Scanning electron microscopy observations and energy-dispersive X-ray spectrometry analysis confirm that magnetite grains are authigenic. In summary, the carbonate rocks of the Zongpu Formation in Gamba have been chemically remagnetized. Thus, the early Paleogene latitude of the Tibetan Himalaya and size of Greater India have yet to be determined and the initiation of collision cannot yet be precisely dated by paleomagnetism. If collision began at 59 +/- 1 Ma at similar to 19 degrees N, as suggested by sedimentary records and paleomagnetic data from the Lhasa terrane, then a huge Greater India, as large as similar to 3500-3800 km, is required in the early Paleogene. This size, in sharp contrast to the few hundred kilometers estimated for the Early Cretaceous, implies an ever greater need for extension within Greater India during the Cretaceous.Note
6 month embargo; First published: 13 February 2017ISSN
21699313Version
Final published versionSponsors
Netherlands Organization for Scientific Research (NWO) [825.15.016]; Institute for Rock Magnetism (IRM) at the University of Minnesota - Instruments and Facilities Program of NSFAdditional Links
http://doi.wiley.com/10.1002/2016JB013662ae974a485f413a2113503eed53cd6c53
10.1002/2016JB013662