• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Emerging Materials for Transparent Conductive Electrodes and Their Applications in Photovoltaics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15297_sip1_m.pdf
    Size:
    7.565Mb
    Format:
    PDF
    Download
    Author
    Zhu, Zhaozhao
    Issue Date
    2017
    Keywords
    nano-materials
    nanowire
    solar cells
    transparent conductive electrodes
    metal oxide
    Advisor
    Mansuripur, Masud
    Falco, Charles M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Clean and affordable energy, especially solar energy, is becoming more and more important as our annual total energy consumption keeps rising. However, to make solar energy more affordable and accessible, the cost for fabrication, transportation and assembly of all components need to be reduced. As a crucial component for solar cells, transparent conductive electrode (TCE) can determine the cost and performance. A light weight, easy-to-fabricate and cost-effective new generation TCE is thus needed. While indium-doped tin oxide (ITO) has been the most widely used material for commercial applications as TCEs, its cost has gone up due to the limited global supply of indium. This is not only due to the scarcity of the element itself, but also the massive production of various opto-electronic devices such as TVs, smartphones and tablets. In order to reduce the cost for fabricating large area solar cells, substitute materials for ITO should be developed. These materials should have similar optical transmittance in the visible wavelength range, as well as similar electrical conductivity (sheet resistance) to ITO. This work starts with synthesizing ITO-replacing nano-materials, such as copper nanowires (CuNWs), derivative zinc oxide (ZnO) thin films, reduced graphene oxide (rGO) and so on. Further, we applied various deposition techniques, including spin-coating, spray-coating, Mayer-rod coating, filtration and transferring, to coat transparent substrates with these materials in order to fabricate TCEs. We characterize these materials and analyze their electrical/optical properties as TCEs. Additionally, these fabricated single-material-based TCEs were tested in various lab conditions, and their shortcomings (instability, rigidity, etc.) were highlighted. In order to address these issues, we hybridized the different materials to combine their strengths and compared the properties to single-material based TCEs. The multiple hybridized TCEs have comparable optical/electrical metrics to ITO. The doped-ZnO TCEs exhibit high optical transmittance over 90% in the visible range and low sheet resistance under 200Ω/sq. For CuNW-based composite electrodes, ~ 85% optical transmittance and ~ 25Ω/sq were observed. Meanwhile, the hybridization of materials adds additional features such as flexibility or resistance to corrosion. Finally, as a proof of concept, the CuNW-based composite TCEs were tested in dye-sensitized solar cells (DSSCs), showing similar performance to ITO based samples.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.