Show simple item record

dc.contributor.advisorMansuripur, Masuden
dc.contributor.advisorFalco, Charles M.en
dc.contributor.authorZhu, Zhaozhao*
dc.creatorZhu, Zhaozhaoen
dc.date.accessioned2017-04-07T22:00:26Z
dc.date.available2017-04-07T22:00:26Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/10150/623062
dc.description.abstractClean and affordable energy, especially solar energy, is becoming more and more important as our annual total energy consumption keeps rising. However, to make solar energy more affordable and accessible, the cost for fabrication, transportation and assembly of all components need to be reduced. As a crucial component for solar cells, transparent conductive electrode (TCE) can determine the cost and performance. A light weight, easy-to-fabricate and cost-effective new generation TCE is thus needed. While indium-doped tin oxide (ITO) has been the most widely used material for commercial applications as TCEs, its cost has gone up due to the limited global supply of indium. This is not only due to the scarcity of the element itself, but also the massive production of various opto-electronic devices such as TVs, smartphones and tablets. In order to reduce the cost for fabricating large area solar cells, substitute materials for ITO should be developed. These materials should have similar optical transmittance in the visible wavelength range, as well as similar electrical conductivity (sheet resistance) to ITO. This work starts with synthesizing ITO-replacing nano-materials, such as copper nanowires (CuNWs), derivative zinc oxide (ZnO) thin films, reduced graphene oxide (rGO) and so on. Further, we applied various deposition techniques, including spin-coating, spray-coating, Mayer-rod coating, filtration and transferring, to coat transparent substrates with these materials in order to fabricate TCEs. We characterize these materials and analyze their electrical/optical properties as TCEs. Additionally, these fabricated single-material-based TCEs were tested in various lab conditions, and their shortcomings (instability, rigidity, etc.) were highlighted. In order to address these issues, we hybridized the different materials to combine their strengths and compared the properties to single-material based TCEs. The multiple hybridized TCEs have comparable optical/electrical metrics to ITO. The doped-ZnO TCEs exhibit high optical transmittance over 90% in the visible range and low sheet resistance under 200Ω/sq. For CuNW-based composite electrodes, ~ 85% optical transmittance and ~ 25Ω/sq were observed. Meanwhile, the hybridization of materials adds additional features such as flexibility or resistance to corrosion. Finally, as a proof of concept, the CuNW-based composite TCEs were tested in dye-sensitized solar cells (DSSCs), showing similar performance to ITO based samples.
dc.language.isoen_USen
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.subjectnano-materialsen
dc.subjectnanowireen
dc.subjectsolar cellsen
dc.subjecttransparent conductive electrodesen
dc.subjectmetal oxideen
dc.titleEmerging Materials for Transparent Conductive Electrodes and Their Applications in Photovoltaicsen_US
dc.typetexten
dc.typeElectronic Dissertationen
thesis.degree.grantorUniversity of Arizonaen
thesis.degree.leveldoctoralen
dc.contributor.committeememberMansuripur, Masuden
dc.contributor.committeememberFalco, Charles M.en
dc.contributor.committeememberNorwood, Roberten
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineOptical Sciencesen
thesis.degree.namePh.D.en
refterms.dateFOA2018-06-24T09:08:37Z
html.description.abstractClean and affordable energy, especially solar energy, is becoming more and more important as our annual total energy consumption keeps rising. However, to make solar energy more affordable and accessible, the cost for fabrication, transportation and assembly of all components need to be reduced. As a crucial component for solar cells, transparent conductive electrode (TCE) can determine the cost and performance. A light weight, easy-to-fabricate and cost-effective new generation TCE is thus needed. While indium-doped tin oxide (ITO) has been the most widely used material for commercial applications as TCEs, its cost has gone up due to the limited global supply of indium. This is not only due to the scarcity of the element itself, but also the massive production of various opto-electronic devices such as TVs, smartphones and tablets. In order to reduce the cost for fabricating large area solar cells, substitute materials for ITO should be developed. These materials should have similar optical transmittance in the visible wavelength range, as well as similar electrical conductivity (sheet resistance) to ITO. This work starts with synthesizing ITO-replacing nano-materials, such as copper nanowires (CuNWs), derivative zinc oxide (ZnO) thin films, reduced graphene oxide (rGO) and so on. Further, we applied various deposition techniques, including spin-coating, spray-coating, Mayer-rod coating, filtration and transferring, to coat transparent substrates with these materials in order to fabricate TCEs. We characterize these materials and analyze their electrical/optical properties as TCEs. Additionally, these fabricated single-material-based TCEs were tested in various lab conditions, and their shortcomings (instability, rigidity, etc.) were highlighted. In order to address these issues, we hybridized the different materials to combine their strengths and compared the properties to single-material based TCEs. The multiple hybridized TCEs have comparable optical/electrical metrics to ITO. The doped-ZnO TCEs exhibit high optical transmittance over 90% in the visible range and low sheet resistance under 200Ω/sq. For CuNW-based composite electrodes, ~ 85% optical transmittance and ~ 25Ω/sq were observed. Meanwhile, the hybridization of materials adds additional features such as flexibility or resistance to corrosion. Finally, as a proof of concept, the CuNW-based composite TCEs were tested in dye-sensitized solar cells (DSSCs), showing similar performance to ITO based samples.


Files in this item

Thumbnail
Name:
azu_etd_15297_sip1_m.pdf
Size:
7.565Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record