• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Independence Screening in High-Dimensional Data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15216_sip1_m.pdf
    Size:
    656.5Kb
    Format:
    PDF
    Download
    Author
    Wauters, John
    Issue Date
    2016
    Keywords
    feature screening
    high-dimensional data
    independence screening
    modeling
    dimension reduction
    Advisor
    Niu, Yue
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    High-dimensional data, data in which the number of dimensions exceeds the number of observations, is increasingly common in statistics. The term "ultra-high dimensional" is defined by Fan and Lv (2008) as describing the situation where log(p) is of order O(na) for some a in the interval (0, ½). It arises in many contexts such as gene expression data, proteomic data, imaging data, tomography, and finance, as well as others. High-dimensional data present a challenge to traditional statistical techniques. In traditional statistical settings, models have a small number of features, chosen based on an assumption of what features may be relevant to the response of interest. In the high-dimensional setting, many of the techniques of traditional feature selection become computationally intractable, or does not yield unique solutions. Current research in modeling high-dimensional data is heavily focused on methods that screen the features before modeling; that is, methods that eliminate noise-features as a pre-modeling dimension reduction. Typically noise feature are identified by exploiting properties of independent random variables, thus the term "independence screening." There are methods for modeling high-dimensional data without feature screening first (e.g. LASSO or SCAD), but simulation studies show screen-first methods perform better as dimensionality increases. Many proposals for independence screening exist, but in my literature review certain themes recurred: A) The assumption of sparsity: that all the useful information in the data is actually contained in a small fraction of the features (the "active features"), the rest being essentially random noise (the "inactive" features). B) In many newer methods, initial dimension reduction by feature screening reduces the problem from the high-dimensional case to a classical case; feature selection then proceeds by a classical method. C) In the initial screening, removal of features independent of the response is highly desirable, as such features literally give no information about the response. D) For the initial screening, some statistic is applied pairwise to each feature in combination with the response; the specific statistic chosen so that in the case that the two random variables are independent, a specific known value is expected for the statistic. E) Features are ranked by the absolute difference between the calculated statistic and the expected value of that statistic in the independent case, i.e. features that are most different from the independent case are most preferred. F) Proof is typically offered that, asymptotically, the method retains the true active features with probability approaching one. G) Where possible, an iterative version of the process is explored, as iterative versions do much better at identifying features that are active in their interactions, but not active individually.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Statistics
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.